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ABSTRACT 

Inviscid hypersonic flow of chemically relaxing air about pointed circular 

cones has been calculated using Dorodnitsyn's one-strip integral method. The c:ir 

model used consists of 02' N 2, 0, N, and NO, of which the relative amounts 

are controlled by six reaction equations which actually represent eighteen chem-

ical reactions. Also considered are the limiting cases of nonequilibrium flow, 

namely, chemically frozen flow, and the flow with chemical equilibrium. Vibra-

tional equilibrium has been assumed throughout. 

The principal contribution of this work lies in the method of solution. 

Specifically, it is demonstrated that the replacement of the approximate tangential 

momentum equation, and of all approximate species continuity equations by their 

exact forms along the body surface I eads to a system of equati ons whi ch, fi rst, can 

be stably integrated, and second, yields results which compare quite well with 

those obtai ned by the method of characteri sti cs. A detail ed di scussi on of the 

polynomial approximations employed in the integral method, the introduction of a 

characteri sti c relaxati on length defi ned in terms of the i ni tial speci es MISS frocti on 

grodi ents, as well as many new resu I ts for hypersoni c flow of a: r wi th fi ni te rate 

nonequil ibrium di ssociati on abou~ ci rcular cones are further contributi ons of the 

work reported herei n • 
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The discussion c,f results includes two cases which show the very good 

agreement of the results from the integral method with those from the method of 

characteri sti cs. Vari ous other cases serve to illustrate the i nfl uence of free stream 

vel oci ty (54oo:s; V,,,em/sec] :s; 11186), cone semi -vertex angl e (20 0 :s; 8 :s; 45 0), 

and altitude (31 km to 80 km) on the variation of all flow field variables. The 

anal ysi s of a cone with constant semi -vertex angl e and free stream vel oci ty at 

three different altitudes is used to demonstrate the validity, and its range, ,.,f the 

nonequll ibrium seal ing law Poo ' L 0= constant. 

For one case, the asymptotic equilibrium state of the nonequilibrium flow is 

compared with the. results of a conical equilibrium flow calculaticn. According 

to theoretical considerations an agreement between the two cannot be expected, 

and this is confirmed by the comparison. Although the cone surface pressures 

agree very closely, it is found that the values for the asymptotic body surface 

temperature are higher than those for coni cal equi I ibrium. Both, the asymptoti c 

surface densi ty and the surface vel oci ty stay below thei r val ues for coni col 

equilibrium. 
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CHAPTER I 

INTRODUCTION 

Over the past few years consi derabl e effort has been devoted to the under­

standing and the theoretical prediction of the noneq"uilibrium flow field conditions 

encountered in hypersonic flight. Present technology dictated the use of blunted 

body shapes for reentry vehicles in order to minimize the convective "eating rate 

to the body surface. Quite naturally, calculations of flow fields surrounding 

hypersonic blunt bodies were of prime importance. For a survey of calculation 

techniques for this class of problems the reader is referred to Hayes and Probstein 

(Ref. 1). In particular, the general method of integral relations, proposed by 

Dorodnitsyn (Ref. 2), proved to be quite successful in predicting shock wave shapes 

and other flow field variables for certain dmple blunt bodies. Also, this method 

is readily adaptable to machine calculations. The investigations of Shih, Baron, 

Krupp and Towle (Ref. 3), Hermann and Thoenes (Ref. 4), and most recently, 

Thompson (Ref. 5), are some examples of :nviscid real gas flow field calculations 

using the integral method. 

Comparatively less attention has been paid to the high temperature real gas 

flow past pointed bodies, which appear to be of growing interest and importance. 

Certainly the time will come when it is desirable to land on the Earth's surface 

some space probes returning from for distant planets. These probes will reenter the 
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atmosphere at a speed far above earth parabolic speed. Both/convective and 

radiative hea~;ng will occur, but because of the high speed, radiation is expected 

to be the dominant source of heating. It was therefore pointed out by Allen (Ref .6) 

that the shock wave sweepback provided by pointed conical entry bodies could be 

used to reduce the gas luminosity grossly, and thus the total heating rote. There-

fore, be.ides being of fundamental interest, the calculation of high temperature 

nonequilibrium flow past pointed cones may be of very practical importance in the 

near future. 

It is interesting to note that one of the first approximate theories for non-

equilibrium cone flow was developed by Chapman (reported by Stephenson, Refol) 

in order to determine relaxation times of oxygen and nitrogen vibrations. Using 

essentially a stream tube method, Chapman derived equations which related the 

coordinates of the curved shock wave to an effective relaxation time of the flow 

in the shock layer. Having obtained shock wave coordinates from experiments, 

Stephenson (Ref. 7) evaluated relaxation times which agreed reasonably well with 

data obtained from shock tube experiments. 

If the flow field is entirely supersonic then the method of characteristics 

is available for its calculation, provided that some initial data are available. 

Calculations using the method of characteristics were first reported by Sedney, 

South and Gerber (Ref. 8) for the case of vibrationally relaxing flow of pure nit-

ragen over a wedge. These calculations were later extended to include flows past 

---j 
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circular cones (Ref. 9). The authars also reported the necessity of introducing 

modifications in the method of characteristics in order to increase the accuracy of 

the results. This work was followed by Capiaux anJ Washington (Ref. 10) who 

treated nonequilibrium flow of an "ideal dissociating gas" (so-called Lighthill gas) 

past a wedge, also using the method of characteristics. 

In Ref. 11, Wood, Spri ngfi el d and Pallone i nvesti gated the flow over axi-

symmetric bodies by using the method of characteristics. They employed a multi-

component gas model and included a simple model for vibration-dissociation 

coupling. Results were given for flows over blunted cones and ogival bodies. 

The first application of Dorodnitsyn's integral method to the real gas flow 

over pointed bodies was given by South (Ref. 12). He considered vibrationally 

relaxing flow of a pure diatomic gas past a circular cone, using the one strip 

approximation, and constant relaxation time. He also reported that a system of 

equations containing the tangential momentum equation and the vibrational rate 

equation in their exact forms could not be integrated successfully. He found it 

necessary to use linear approximations in all the conservation equations. The 

pressure di stributi on obtai ned from thi s set, together with a set of corrected 

equati ons then served to ob tai n a corrected sol uti on. The appl i cati on of the two 

and three strip integral method to the same problem is discussed in Ref. 13. 

South and Newman (Ref. 14), and Newman (Ref. 15) discussed a modifj-

cati on to the one stri p integral method as appl i ed to wedge flow. Instead of usi ng 

". 
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first order polynomials to approximate certain integrands, the integrals themselves 

were replaced by weighted averages of the integrands. According to the authors, 

this procedure resulted in a better description of the flow within the shock layer, 

but again, it was found necessary to integrate a set of corrected equations after 

obtai ning an approxi mote sol uti on. 

Thoenes (Ref. 16) used the one strip integral method and a simplified three 

component air model, applicable in the oxygen dissociation regime, to calculate 

chemically relaxing flow past cones. In particular, these calculations successfully 

employed the exact tangential momentum and species continuity equation, a method 

which the author labelled as the "semi -exact procedure". Resul ts from the two 

strip integral method for dissociating flow were discussed in Ref. 17. 

There are other methods which have been used for the calculation of non­

equilibrium flow fields around pointed bodies. Lee (Ref. 18) evaluated vibrationally 

relaxing flow over wedges by a perturbation method, while Dejarnette (Ref. 19) 

presented an "artificial viscosity" method to evaluate wedge flows with simple 

relaxation processes, including various schemes of vibration-dissociation coupling. 

All these calculations with simple rate processes are of basic interest and valuable 

for determining suitable numerical techniques. However, with the exception of 

Ref. 11, they cannot describe adequatel y a flow fi el d i nvol vi ng several si mul­

taneous relaxation processes as they occur, in air for example. Presumably, this 

prompted Spurk, Gerber and Sedney (Ref. 20) to cal cui ate hypersoni c fI ow of ai r 

u : 10 , _ M ."-. 
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post wedges and cones by the method of characteristics, considering a five compa-

nent ai r model i nvol vi ng numerous chemi cal reacti ons. Unfortunatel y, the appl i-

cation of the method of characteristics to nonequilibrium flow is complicated and 

computation times can be very long, even on modern computers. 

No cal culati ans, comporabl e to the work of Spurk, Gerber and Sedney, but 

usi ng procedures other than the method of characteri sti cs, coul d be found in the 

literature at the present time. It is expected that the work herein will fill this 

gap by presenting a formulati on of Dorodnitsyn's integral method for hypersoni c 

flow of a multicomponent chemically reacting gas about pointed bodies. The 

principal advantage of the integral method is that it reduces the governing partial 

differential equations to ordinary differential equations for which highly efficient 

numeri cal i ntegrati on techni ques have been devel op",d . 

A detailed description of the multicompanent gas model far high temperature 

air, and its thermodynamic properties, is given in Chapter II. In Chapter III, the 

basic partial differential equations are presented. They are cast in a suitable 

coordinate system, and the discussion of applicable boundary conditions concludes 

the formulation of the problem. The solution is discussed in Chapter IV. After 

reviewing the method of integral relations in general, its application to the 

prcbl em at hand is described in detai I. A fj nal secti on on the numeri cal techni ques 

used leads to Chapter V, which is aevoted to the discussion of the results. 



CHAPTER II 

GAS MODEL AND THERMODYNAMICS 

2. 1 Gas Model 

To determine the values of the flow variables within the shock layer aoout 

a body moving in the atmosphere at hypersonic speeds, it is necessary to account 

for the effects af chemical reactions that take place within the layer. Such 

reactions procelld at a finite rate, but for flow about infinite cones, the gas will 

eventual! y reach a state of thermal and chemi cal equil ibrium. Figure 1 presents 

lines of constant compressibility factor and temperature at the surface of a cone 

for equilibrium flow, using data given in Ref. 21. Although this is a purely hypo-

theti cal case, the figure shows approxi matel y the condi ti ons whi ch have to be met 

by the air model to be chosen. For example, if a conical vehicle with a semi-

vertex angl e of thi rty degrees enters the Earth's atmosphere at an al ti tude of 80 km 

at earth parabolic speed it is to be expected that, once equilibrium is reached on 

the streamline that wets the body, the surface temperature is around five thousand 

degrees Kelvin, and that a sizable fraction of the nitrogen molecules must have 

dissociated (Z""J.4). This example shows that, in order to calculate such flow 

conditions, the gas model representin'l high temperature air must be assumed to 

consist at least of a mixture of 02' N2, NO, 0, and N. It is iJrthermore 
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assumed that all .pecies are in translational, rotational and vibrational equilibrium 

in every flow region, which implies a single temperature for oil the degrees of 

freedom. Assuming weakl y interacting particles t. .e. particl es whi ch exchange 

energy only by collisions, and the collision times are small compared with the time 

between collisions) partition functions may be used to calculate all thermodynamic 

properti es. Thus i oni zati on, vibrational nonequil ibri um, as well as vibrati on-

di$sociation coupling are neglected. The latter two assumptions will be critically 

examined at the end of this chapter. 

The compasition of air along with ather physical constants as used in the 

present investigation are summarized in Table I. 

2.2 Partition Functions 

Under the assumptions stated in the previous section, all of the thermo-

dynamic. properti es of a gas may be deri ved from its parti ti on functi on. Detai Is 

on the parti ti on functi on may be found in any text on stati sti cal thermodynami cs 

(Ref. 22, 23, 24). In this section only those relations will be summarized which 

are needed for subsequent calculations. 

The partition function may be defined as 

Q = ~ g. exp (- k € ~ ) 
• J 

(2.1) 

J 

where €. is the common energy of several states, and g. is the degeneracy, that 
J J 
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is, the nurmer of states of the parti cI e whi ch have thi s common energy level. In 

the present investigati on, the energy may be due to the translational, rotational 

or vibrational motion of the particles and, in a limited way, due to the motion of 

the .. Iectrons within the particle. Assuming that no coupling exists between the 

difierent modes of excitation, the partition function may be written as the product 

(2.2) 

where the factors on the right hand si de of Eq. (2.2) are the partiti on functi ons 

associated with the translational, rotational, vibrational and el ectroni c energy 

levels of the particle. For diatomic molecules these factors are: 

r 
Q "'" 

QV = 

Qe = 

= 

[ 1 - exp ( - eV / T ) ] 
-1 

n 

L: e 
g. exp (- e. / T) 

j=O J J 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

r v e 
Here e , e , and e. are characteristic temperatures for rotation, vibration, and 

J 

el ectroni c exci tati on, respecti vel y. Monatomi c parti cI es have no modes of rota-

tional or vibrational excitation, therefore, the respective partition functions take 

the value unity. Table II presents the atomic and molecular constants which were 

used in the present calculations. 
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2.3 Thermodynamic Properties 

2.3. 1 _ Thermal Equati on of State 

A ccordi ng to stati sti cal thermodynami cs the parti al pressure whi ch a system 

of weakly interacting particles of species i exerts on its surroundings is given in 

terms of the partition function as 

o 
Pi = ni k T 0 V (I n Q) 

where n. denotes the number of parti cI es of speci es 
I 

(2.7) 

contai ned in the vol ume 

V, and k is Boltzmann's constant. Since, as seen from Eg. (2.3) through (2.6), 

only the translational partition function depends on the volume V, one obtains 

Hence, the pressure becomes 

n. k T 
I 

V 

(2.8) 

(2.9) 

Introducing the molecular weight M., and Avogadro's number N*, Eg. (2.9) can 
I 

be rewri tten as 

= (~ Mi ) N*k 
Pi V N* M. 

I 

T (2.10) 

whi ch is at once recogni zed as the eguati on of state of a thermal! y perfect gas, vi z. 

(2. 11) 

" , 
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Since it is assumed that each species of the gas mixture can be treated as a 

thermal I y perfect gas, the pressure of the mixture is, accordi ng to Dol ton's I ow, 

the sum of its parti 01 pressures, that is 

2: 
P. 

p. = R* T .......!..... 
I • M. 

I I 

Defining the mass fraction of the ith species as 

c. == 
I 

P. 
I 

P 

the equation of state can be expressed as 

p = P R* T 1: Y. 
• I 
I 

where the Y. are the molar concentrations defined as 
I 

(2. 12) 

(2.13) 

(2. 14) 

(2.15) 

It is often convenient to express the pressure of the dissociated gas mixture in terms 

of the gas constant of the undi ssociated gas. Eq. (2.14) can then be wlitten as 

p=pRZT (2.16) 

where R = R* / M is the specific gas constant of the undissociated gas, and Z is 

the compressibility factor defined by 

L: 
i 

Y. 
I 

(2. 17) Z=M 

. 
- ~'I 
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A gas mixture consisting of i distinct species in the dissociated state, and 

of i species in the original undissociated state, requires i mass balance 
o 0 

equati ons and 0 - i ) rei ati ons between the speci es mass fracti ons. The former 
o 

are, first, that the sum of all mass fractions is unity, 

:E C. = 1 
I I 

(2.18) 

and, second, that the mass fraction of one element is fixed. For example, for air 

(2.19) 

or, alternati vel y 

(2.20) 

which is a direct consequence of relations (2.18) and (2.19). 

2.3.2 Internal Energy and Enthalpy 

Again calling on statistical thermodynamics, the internal energy of a system 

of n. weakly interacting particles is given in terms of the partition function as 
I 

(2.21 ) 

Introducing the molecular weight and Avogadro's number, the internal energy 

becomes 

E = I I 
( 

n. M.) 
i N* 

N*k 
M. 

I 

(2.22) 

.. ~.-. ·~,-:-.. a---~~:"'·-.,,:""';;"~~- _____ --. ---i 
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Recognizing that the term (n. M. I N*) has the dimension of mass, the specific 
I I 

internal energy, that is internal energy per unit mass, can be expressed as 

= e. 
I 

R* 
M. 

I 

2 0 
T aT (In Q) (2.23) 

Using Eq. (2.2) through (2.6), and (2.23), the specific internal energy for a pure 

monatomi c gas is 

= R* { e. M 
I • 

I 

and, for a pure diatomic gas, 

:: R* { e. M 
I • 

I 

3 
2 

T + 
~ g. 8.

e 
exp (- 8~ I T) 

J J J J } (2.24 ) 

:E g. exp (- 8.
e IT) 

j J J 

8~ ~ g.8~ exp (_8.
e 

IT) } 
I + I J J J 

exp (e~ IT) -1" (-8e/T) 
I .t.,J g. exp . 

J J 
J (2.25) 

The last terms in the above equations, representing the contribution of electronic 

excitation to the internal energy, become significant at extreme temperatures only, 

and can be neglected for the range of temperatures considered in the present 

i nvestigati on. 

In the case of a dissociating gas mixture the dissociation ener,gy for each 

molecular species must be included in the internal energy. This energy term may 

be expressed as 

(2.26) 



, ... 

; 

" 

where, in the present case, j ::: O
2

, N
2

, NO, and the subscript 0 designates 

the undi ssoci ated state. 

The total specific internal energy of a mixture of monatomic and diatomic 

gases can now be written as 

13 

E = r: c. e. + L e? (2.27) 
I I I j J 

The specific enthalpy of the mixture is defined as 

(2.28) 

and substiiutiol", of the pertinent relations into Eq. (2.28) yields, for the five com-

panen! gas mixture considered herein, the following expression for the enthalpy: 

v Y
NO 

e NO YN2 e~2 +----- + 

e~2 IT 
e -1 

e~O/T 
e -1 

+ [(Y 02) 0 - Y02 ] e~2 + [(Y N2)0 - Y N2] e~2 + [(Y NO)o - Y NO]e~O } 

(2.29) 

Utilizing the mass balcnce equations, Eq. (2.19) and (2.20),in order to eliminate 

the molar concentrations (Y 02)0 and (Y N2)0' and also considering that in the 

adopted air model (Y NO)o is zero, a more convenient expression for the enthalpy 

is easi I y deri ved from Eq. (2.29): 



v 
I 7 eNO 

+Y ,-T +---+ NO 2 v 
eNOIr 

e -1 

* 
+ Y (2- T + o 2 ) + Y N ( + T + e~2 ) } 

It is recognized that the specific enthalpy now has the more general form 

h = r: c. h. (1') 
i I I 

14 

(2.30) 

(2.31 ) 

For the calculations in the following chapters it is convenient to define 

a frozen specific heat CIS the partial derivative of h with respect to T, that is 

ah c ;; 
p aT (2.32) 

which, according to Eq. (2.31) may be expressed as 

~ 
ah. 

c = C. -;;--T
1 = L c. c 

P i I 0 i I Pi 
(2.33) 

Hence, like the specific enthalpy, the frozen specific heat of the gas mixtlJre is 

simply the weighted sum of the individual specific heats. An explicit expression 

for c, asderivedfromEq. (2.30), is given in Appendix A. 
p 

-. -::. ~-~··i 
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2.4 Rate Pro.:esses 

2.4.1 Finite Rate Nonequilibrium 

In general, a large number of callisions among the particles is r')quired to 

equilibrate the molecular vibrations, dissociation and higher modes of excitation 

with the local translational temperature. This means that, once being in a state 

of nonequilibrium, a finite amount of time is needed for the gas properties to 

achieve thermodynamic equilibrium. The departure from equilibrium of a flowing 

gas is characterized by the magnitude of this relaxation time T relative to some 

translati onal time t needed by the parti cI es to change thei r state. The Ii mi ti ng 

values of the ratio of T over t are a convenient means to characterize the 

equilibrium state (T / t ... 0) ond the frozen state (T / t ... CD). 

The purpose of thi s secti on is to present the equati ons whi ch are necessary 

to account for finite rate nonequilibri um effe(:ts in the cal cui ations. Essenti all y 

this is equivalent to finding an expression for the relaxation time T in terms of 

the vari abl es of state. 

2.4.2 Species Continuity Equation 

Consider an arbitrary material volume containing particles of various species, 

each species forming the partial density P. • Neglectfng diffusion, the mass rate 
I 

of change of the ith component in the mixture must equal the rate of production 

(which may be negative or positive) of the ith species, that is 



.... 
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~t f Pi dV = f Wi d V (2.34) 

V V 
where W. is defined as the mass rate of formation of species per unit volume 

I 

due to chemical reactions. Using Reynolds' transport theorem, Eq. (2.34) may be 

rewritten 

f [ oP. . ] aT- + 9' (Pi ~) - Wi dV = 0 (2.35) 

V 
Since the volume considered was arbitrary, this means that 

a P. 
I 

at 
... 

+ 9 • (P. q) = W. 
I I 

(2.36) 

• 
Summi ng over all speci es i, and consi deri ng that I: P. = p, 01 so 

i I 
I: W. = 0 
i I 

since total mass must be conserved, one obtains the overall mass conservation 

equation 

ap 
at 

... 
+V"(Pq)=O 

Replacing p. by p C. in Eq. (2.36), and expanding differentials yields 
I I 

(2.37) 

(2.38) 

Since the first term on the left hand side vanishes according to Eq. (2.37), the 

species continuity equation finally assumes the form 

o C. 
I 

at + ~ . 9C. = (W. / p) 
I I 

It is worth noting that the quantity (p/W. ) has the dimension of time, and 
I 

(2.39) 

I 

--·1 
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therefore may be interpreted as a relaxation time for the species i. In the 

following section an explicit expression for W. will be derived. 
I 

2.4.3 Rate Equations 

Following Vincenti and Kruger (Ref. 24), a chemical reaction is considered 

to have the following description: 

4: v• A. 
I I I 

~ v' A 
Iii 

(2.40) 

where the v. are the stoichiometric coefficients of the reactants, v: those of the 
I I 

products. A M is a so-called third body species which does not participate as a 

reactant. kd,M and kr,M are the respective reaction rate constants for disso­

ciation and recombination. 

Defi ni ng the concentrati on of the speci es A. by X., that is 
I I 

C. 
X. ;: 

I 

I 

M. o = p Y. 
I 

(2.41 ) 
I 

it is an experimentally observed fact that the rate of formation of anyone of the 

products in a single step reaction can be expressed as 

d X. Vi vM 

( d tl)d = (v; -Vi)kd,M ~ Xi XM 
(2.42) 

where the product on the right hand si de extends over all the reactants • 

l 
i 

- --I 
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Similarly, the rate of disoppearance of any species A. can be expressed 
I 

as 
d X Vi V 

( i) = (v. _ v.' ) k TI X. i X M 
d t I I r,M I I M 

r 

(2.43) 

where again the product is taken over all of the reactants. 

The net rate of producti on of the speci es /l. is then the sum of its rate of 
I 

formation and its rate of disoppearance, vis. 

d X. (d X. ) 1 _ 1 

""dT - -dt d + (dd ~i ) 
r 

(2.44 ) 

or, with Eq. (2.42) and (2.43): 

d X. [ 
-.,.-_1 = (v: - v.) k 

d til d,M 

v. 
X.I - k 

1 r,M 

V VI] M . 
XM 'If Xi I 

(2.45) 

For thermodynamic equilibrium, the net rate of production of each and all 

sped es must vani sh ("pri ncipl e of detail ed bal anci ng"), hence from Eq. (2.45): 

V Vi 

kd M n X. i - k M n X. i = 0 
I i I r, i I 

(2.46) 

Eq. (2.46) can also be written in the more familiar form 

n x. 
v: 

kd,M 
I 

'" i 1 
K (T) (2.47) -

k v 
r, "A i 

c 

U X. 
1 1 

where K (r) is call ed the concentrati on equi I ibri um constant, and expressi on 
c 

(2.47) represents the law of ma.s oction. 
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If it is assumed that, for gi ven temperature and reactant concentrari ons, the 

rate at which a reaction proceeds in a given direction is the same whether the 

system is or is not in equilibrium, Eq. (2.47) may be used to replace either k d,M 

or kin Eq. (2.45). Hence let 
r,M 

= k K 
r,M c 

(T) (2.48) 

Using this expression, and also accour.ting for the possibility of several species 

acting as third bodies, the resulting rate of production is obtained from expression 

(2.45) as 

d Xi = (v.' _ v. ) "" k X vM [ K IT X,Vi _ U x. vi ] (2.49) 
d til ~ r,M M c ill 1 

M 
Consi deri ng al so that there may be m diHerent chemi cal reacti ons of the type 

, 

represented by Eq. (2.40), the total rate of production of the element A. is given 
1 

by the sum over all reacti ons, that is 

[
V. I ] 

K TI x. I-II X.vi 
c ill 1 

(2.50) 

It is obvious from Eq. (2.47) that K (T) is, for the mth reaction, indepen­
c 

dent of the thi rd body speci es AM' Natural I y, for different reacti ons, the equil i­

brium constants are different functions of temperature. Their eval uation is dh-

cussed in section 2.5 of this chapter. 

For the air rr'odel used in this investigation the following set of chemical 

reactions will be considered (Ref. 15): 

---~~~================~======~~== ~--,-- ----'-- -,- ... --"-- - -----.-1 



.. 
'. '. 

m = I 

II 

III 

IV 

V 

VI 

I 

kd,M 
o + M + 5.1 ev ... 2 .... 

kI 
r,M 

N + M + 9.8 ev ... 
2 .... 

NO + M + 6.5 

NO +0 + 1.4 

ev ... .... 

ev ~ .... 

20+ M 

2 N + M 

O+N+M 

o +N 
2 

N + 0 + 3.3 ev'" NO + N 2 .... 

02 + N2 + 1.9 ev: 2 NO 

20 

(2.51 ) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

Reactions I, II, and III are the principal dissociation reactions, and, considering 

the various third body species (see Table III), actuc..lly represent fifteen different 

reactions. The remaining equations represent the so called shuffle reactions. 

Altogether, eighteen chemical reactions are considered bEotween the five companents 

of the gas mixture. 

The application of Eq. (2.50) to the above set of reactions yields the 

following expressions, already simplified by introducing the molar concentrations 

Yo. : 
I 

-..:.... s:s: __ 

, 
~ . 

- -.-.. ~. 
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(2.57) 

(
dXN2) ;: p2{ ( y2 _y KII) [y kll +Y kIl 

d t tot p N N2 c N2 r(N2) N r(N) 

+ (Y 2 _ Y Y K VI ) k VI } 
NO 02 N2 c r 

(2.58) 

d X { 
( 

NO)::: p2 (PY Y -Y KIII)(Y +Y +Y +Y +Y )kill 
d tON NO c 02 N2 NO 0 N r 

tot 

(2.59) 

Proper rearrangement of terms in the corresponding expressions for the mon-

atomic species 0 and N shows that 

0' 

&f_ ._. ~ __ _......... 3 _;::;:: __ , . .,.;:. _ -: ~ -_. ~, -~~=====-::====-:=======-==o_" _=-000 __ "_:..c 0
_._"." .. .=~_"""" 
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(
dXO ) = 

CiT tot 
-2 ( 

dX02 ) _ (d XNO) 
d t tot d t tot 

(2.60) 

(
dXN \ = _ 2 (dXN2) _ (axNO ) 
CiT Jtot d t tot d t tot 

(2.61) 

These equations can be obtained, i~ a simpler way, directly from the mass balance 
equations, Eq. (2. 19) and (2.20). 

It is important to keep in mind that the expressions given by Eq. (2.57) • 
through (2.61) are equations representing rates of production due to chemi cal 
reactions taking place in a dosed system of fixed volume, assuming also a constant 
temperature. As painted out by Vincenti and Kruger (Ref. 24), they are customarily 
extended to open systems of varying volume and temperature by identifying density 
and temperature as the instantaneous values for the system. This implies that the 
internal rate processes in a maving fluid are the same as those which occur at the 
same state ina stati c system. The (d ~ / dt )tot is rei ated to the moss rate of 
formation of species i, as defined in the species continuity equation, by the 
relation 

• 

( 
d ~i ) 
d tot 

(2.62) 
W. ::: M. 

I , 

2.4.4 Reaction Rate Constants 

In order to evaluate the reoction rates given in the previous section, 
expressions are needed for the rate constants. Although theories exist for the 
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calculation of dissociation and recombination rate constants (Ref. 24, 26), they 

are either too complex to be useful in practice, or too simplified to produce 

acceptable agreement with experimental data. However, it was recognized on 

experimental grounds that, for many reactions, a plot of the logarithm of the 

dissociation rate constant versus reciprocal temperature produces an essentially 

straight line of negative slope, which leads to the Arrhenius equation 

€:A 

23 

-kT 
kd = A e (2.63) 

where €:A is the activation energy and A some constant independent of tempera­

ture. A refinement of this expression is usually obtained by assuming 

9* 
T n 

kd = ATe (2.64) 

where 9* is the characteristic temperature of dissociation, and the constants A 

and n are determi ned by curve fi ts to the experi mental data. Expressi ons of thi s 

type are numerous in the literature and can usually be traced to the papers by 

Wray (Ref. 25}and lin and Teare (Ref. 26). Expressions used in the present calcu-

lations were taken from Spurk, Gerber and Sedney (Ref. 20), and are listed in 

Table III. 

2.5 Equilibrium Constants 

The equilibrium constants, defined in Eq. (2.47), are also needed for the 

evaluation of the reaction rates. Following again Vincenti and Kruger (Ref. 24), 

~ .---- .----===="'--==---::==-c======:-==-=-.- -
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it is found that, in terms of the partition functions, the equilibrium compasition of 

a gas is given by 

VI 

TIi n. 
i I 

IT v. 
n. I 

i I 

= 

VI 

1}Qi 
I 

V. 
TIQI 
i 

exp ( - (2.65) 

where t.E is the difference in the bond energy of the reactants in Eq. (2.40), n. 
I 

are the numbers of particles involved, and v. and v,' are the stoichicmetric 
I I 

coefficients. The n. are easily expressed in terms of the concentrations by 
I 

noti ci ng that, accordi ng to Eq. (2.41), 

C. P. 
X. = ~ p = 
1M. 

I = 
M.'" 

I I 

n. 
I 

VN* 
(2.66) 

Therefore, expressing the left hand side of Eq. (2.65) in terms of the concentrations 

X. , it can be shown that 
I 

VI 

IT x. i 
i I 

V. 
IT x. I 
i I 

l:V. - l:v~ 
I I 

= (N*V) 

Combining this with Eq. (2.47) and (2.65) it is seen that 
~ VI 

VI 

IT i • n. 
I I 

v 

II i 
n. 

I I 

l:v. - £... v,' IT Q i 

Kc(T) = (N*V) I I i v. exp (- ~*ET ) 

UQ I 

I 

(2.67) 

(2.68) 

which, when applied to the reactions given in Eq. (2.51) through (2.56), turns out 

to be a function of temperature only. Eq. (2.68) shows also why the contributions 

due to electronic excitation must not be neglected in the equilibrium constants • 
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Here, the ratio of the partition function is important, while in the internal energy 

thei r contributi on is onl y addi ti ve • 

It is clear that substitution of the proper expressions for the partition 

functions in Eq. (2.68) leads to complicated functions of the temperature. In 

particular, since use is often made of the equilibrium constants in comparing 

dissociation and recombination rate constants, it is convenient to have them in a 

simple analytic form. For this purpose Wray (Ref. 25) has fitted the equilibrium 
". 

constants calculated from Eq. (2.68) for the reactions given by Eq. (2.51) through 

(2.56) with Arrhenius type expressions of the form 

n * K (T) = A T exp (- 9 / T) 
c 

(2.69) 

These expressions, given in Table IV, are employed in the present calculations. 

With respect to these curve fits a remark is in order at this time. As men-

tioned earlier, the principle of detailed balancing requires that, for a gas mixture 

to be in overall equilibrium, every molecular process and its inverse must be 

individually in balance. Thus it can be shown that, if the total reaction rates and 

their individual contributions are set to zero, the concentration equilibrium con-

stants, for the reacti ons chosen herei n, resul t as follows: 

(X
2 /x ) o . 02 equil. 

(2.70) 

KII:= (XN
2 / XN2 ) '1 c equi . (2.71 ) 

-. ~ - - -.. , 
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K III = (XO XN / X NO ) '1 c equl . 
(2.72) 

and it can al so be shown that 

(2.73) 

(2.74) 

= (2.75) 

Since Wray curve fitted all the K except for K VI, which was determined from 
c c 

K IV and K V according to Eq. (2.75), it is not surprising that Wray's expressions 
c c 

for K IV and K VI differ from K IV and K VI as given in Table IV. For the 
c c c c 

sake of consistency, the latter expressions were obtained from K I through Kill 
c c 

according to Eq. (2.73) through (2.75). Numerical calculations show that the 

disagreement between the K given by Wray and those obtained from equations 
c 

(2.73) through (2.75) is negligible. 

2.6 Equilibrium Composition 

It was mentioned at the beginning of this chapter that is is of interest to 

calculate equilibrium flow even though it is, in the exact sense, a purely 

.","'~'=====;;""";======-=====;;;:C:;;;"=~==:::;::::--=::-: .. ::C:,c.:::;.:~:;:,_"":,"'"";;;-~;:-::."._ ....... ~=:::: __ ':"-_-.:::-' '_-_ =.," 
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hypothetical case. In order to do this, the equilibrium composition of the mixture 

has to be determined as a function of other flow variables. 

For a five component mixture this means that five linearly independent 

equations are needed to solve for all the unknowns. Equations (2.18) and (2.19), 

together with Eq. (2.70) through (2.72), provide just such a set. Hence, from 

Eq. (2.18) and (2.19): 

~ C. = 1 
I 

CNO = 

while from Eq. (2.70) through (2.72): 

2 
C = 2 p C N 

N2 M K II 
N c 

CNO = 

m o 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

Substituting the expressions for the mass fracti ons CO2' C N2 and C NO into the 

mass bal ance equati ons yi el ds 

--~ ----...£~---====- :====~====;:5;==:O-= __ =_= ___ :-:-::: .. :::::_~. "",,": . .,-:'. = __ .. ______ _ ~ ---.-::~_- ---- - .. , - --~ ---, 
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and 

C +C + 2p 
o N M K I 

C + 2 p 
o M K I o e 

o e 

C 2 + ---,P---,,,,,, 
o M KIll 

N e 

from whi eh C N is obtai ned in terms of Co as 

C ~ 
N 

M KIll 
N e 

pC
O 

[
;;:, - C _ _2..:...P-=-

o 0 M KI 
o e 

28 

(2.81 ) 

(2.82) 

C~ ] (2.83) 

Using this equation to eliminate C
N 

from Eq. (2.81) eve ... tually result. in a 

fourth order equati on for CO: 

where 

b
O

=2 (;;:'0 M )2K I KIll o e e 

b 1 =;;' 0 M 0
2 

Ke
I 

K e
III 

Ke
V 

[1 - -±- ] 
K V 

e 

(2.84) 
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{ 2 K~II [ 1 -
4moP J- C- m ~o J-KIIIKV} b =M2 KI KV 0 P -

2 0 c M KI c M M c c 
o c N 0 

b 3 :: PMO K~ K
V [ 8 

- 2 K IV - 1 
J c K VI c 

c 

K V [ 4 
c K VI 

c (2.85) 

Since the b's are functions of temperature and density only, Eq. (2.84) determines 

the equilibrium composition for given temperature and density. It is seen from 

Eq. (2.77) thai the only possible solution can be selected by requiring the atomic 

oxygen mass fraction Co found from Eq. (2.84) to satisfy 

o s Co s [ ~o - CO2 - (~~o ) CNOJ (2.86) 

2.7 Review of Assumptions 

• It is instructive to examine the validity of the assumption of vibrational 

equilibrium which was employed throughout this chapter. A measure for the 

validit/ of this assul""ption is glven by the ratio of the chemical over the vibrational 

relaxation time of the respective species. 

-'--- -----:--::- - - -.: 
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Using expressions given in Ref. 27', vibrational relaxation times for 02 

and N 2 are given by 

30 

r ~2 P = 1.6212.10-
4 

exp ( ) (2.87) 

r ~2 P = 1.1146· 10-6 T 1/2 exp ( 154 ) 
T 1/3 

(2.88) 

where r ~ is given in sec for the pressure in N/m2 and the temperature in oK. 
I 

• 
As previousl y indicated, the quantity (p / W. ) has the dimension of time. 

I 

A chemi cal relaxation time can thus be defined as 

rd _ 
i 

p . 
W. 

I 

(2.89) 

where the mass rate of formation, Wi ' can be evaluated for 02 and N2 from 

Eq. (2.57), (2.58) and (2.62). 

Ratios (rd/rv)i for i =° 2 , N2 are shown in Fig. 2 as function of 

temperature, together with results for 02 taken directly from Ref. (28). It 

should be noted that the values of rd / rV are independent of density. 

It is seen from Fig. 2 that, at least for molecular oxygen and nitrogen, 

vibrational relaxation times are always shorter than chemical relaxation times for 

temperatures below 12,000 oK. Hence it is concluded that, for the t"mperature of 

interest in the present investigation, vibrational relaxation will in general proceed 

much faster than chemical relaxation. Therefore, the assumption of vibrational 

equilibrium is a justifiable simplification. 
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However, it is also recognized, that for temperatures above 8,000 oK 

vibrational and chemical relaxation times assume valL'es of the same order of 

magnitude. Strictly speaking, vibrational relaxation and vibration-dissociation 

coupling should therefore be considered in this temperature range. The difficulty 

here is that, although vibrational relaxati on ra!es are known, an accurate model 

for the coupling does not seem to be available. Conclusions drawn by investi-

gators in this particular field, Ref. 19 for example, leave the question open as to 

the relative validity of the various models. Rather than to introduce equations of 

whi ch the effect is not yet well understood, the vibrati onal exci tati on is assumed 

to be uncoupled to the dissociation, and in equilibrium at all times. 
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CHAPTER III 

FORMULATION OF THE PROBLEM 

3 . 1 Basi c Equati ons 

Neglecting body forces, viscosity, diffusion, heat conduction, and radi-

ation, the basic equations for Sf6.Jdy, adiabatic continuum flow are the following: 

Conservati on of mass: 

... 
'V'(Pq)=O 

Conservation of momentum: 

Conservation of energy: 
... 

... ... 1 
+ ('Vxq)xq+ - 'V P = 0 

p 

2 
q • 'V (h + ...5.-) = 0 

2 

or, assuming all streamlines to originate fro~ the same reservoir, 

2 
h + ....9- .: H = constant 

2 

(3. 1) 

(3.2) 

(3.3) 

These equations are the common equations of motion which do not depend on any 

particular gas model. In order to solve these equations for the unknowns, they 

must be suppl emented by a thermal and a cal ori c equati on of state whi ch do depend 

on the particular gas model and were derived in Chapter II as 

p=pRZT (3.4) 
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and 

h = L: c. h. (n 
i I I 

(3.5) 

If the gc;;s under consi derati on is chemi call y reacti ng, addi ti onal unknowns ari se 

in form of the mass fractions, C., hence, additional equations for the conser­
I 

vation of species must be added to the system. For the air model used herein 

these are given by Eq. (2.39), which, for steady &Iow, reduces to 

q • 'V C. = 
I 

W. 
I 

p 
(3.6) 

where i = 0, N, and NO, and the mass balance ec:uations given by equations 

(2.18) and (2.19). 

The choi ce of the coordi nate system is largel y a matter of experi ence. For 

the problem at hand, an orthogonal curvilinear coordinate system with coordinates 

tangential and normal to the body surface (see Fig. 3) seems to be the most suitable. 

From Ref. 2° one obtains for the gradient 

.... .... .... 

'VF 
e 1 of e2 of 

+ 
e3 of = 

~ ax 1 +r-
h3 oX

3 2 oX2 
(3.7) 

.... 
where F is any scalar point function. For a vector point function F the diver-

gence is given by 

and the curl by 

. -. ~1 
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... ... ... 
h1 e 1 h2 e2 h3 e3 

'VxF= 1 0 0 0 
(3.9) 

h1h2 h 3 oX
1 

oX
2 

oX
3 

h 1 F 1 h2 F2 h3 F3 

The metric coefficients h l' h
2

, h3 follow from the differential arc length 

(3.10) 

Using as coordinates x, y, and <1:>, where <I:> is the circumferential coordinate, 

one obtains from Fig. 4 

h1 dX
1 

= (1 +Ky )dx 

h2 dx 2 = d Y 

h3 dX
3 

= r j d <I:> = (r
b 

+y cos9)j d ¢> (3.11) 

where K = 1/R is the body surface curvature, and 

j :;: { 0 
1 

for plane flow 

for axisymmetric flow 

Appl ying equations (3.7) through (3.11) to equations (3.1), (3.2) and (3.6) and 

restricting to plane or axisymmetric flow, that is, zero angle of attack, the 

resul ti ng equati ons are as foil ows • 

Conservati on of mass: 

o . 0 r 'J oX (pu"!)+ oyl(l+Ky) pvr J = 0 (3. 12) 



. ; 

~: 

.;' , 
. -::: 

--1_--... · 

x - Momentum: 

u ~ + (I + Ky) v ~ + u v K + 1 ox oy P 
~= 0 ox 

y - Momentum: 

ov (I ) ov 2 u ox + +Ky v """FY - u K + :+Ky .~ = 0 
P oy 

Conservati on of speci es: 

o C. 0 C. W. 
I ( I 

U ax + 1+Ky) v"""FY - (I + Ky) --.!.... = 0 
P 
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(3. 13) 

(3. 14) 

(3. 15) 

The above equations, together with the thermal equation of state, the energy 

equation, and two mass balance equations, form a set of ten equations for the 

unknowns u, v, p, p, T and five C.' 
I 

Before discussing the details of the solution of the above system, it will be 

convenient to have equations (3.13) through (3.15) also available in the divergence 

form. After some algebraic manipulations the following equations can be obtained. 

x - Momentum: 

a [ 2'J 0 [ . J ox {p+Pu)rJ +ay {l+Ky)puvrJ 

+ P u v K r j - j p ( 1 - Ky) sin 9 ;:: 0 (3. 16) 

y - Momentum: 

_ (puvrJ)+ - {l+Ky){p+pv)r J o . a [ 2'J 
a x oy 

- (p +pu 2)K r j -j p (1+Ky)cos9 ;:: 0 (3.17) 



36 

Conservati on of Speci es: 

o . 0 [ • • • 
~(puC.rJ)+~ (I+Ky)pvC.r J ]-(l+Ky)rJ W. == 0 

oX I oy I I 
(3.18) 

The boundary conditions which are needed to solve the equations established here 

are gi ven in the next secti on. 

3.2 Boundary Conditions 

3 .2. 1 Body Surface and Shock Condi ti ons 

The body surface is assumed to be chemically inert. The condition for flow 

tangency on the body surface is given by 

v == 0 b 
(3. 19) 

The condi ti ons behi nd the shock wave are obtai ned from the conservati on of mass, 

momentum and energy across the shock wave. 

Conservati on of mass: 

P"" Y n"" == P Y 
s ns 

(3.20) 

Conservation of momentum: 

Yt "" 
== Yts 

(3.21) 

y2 oJ. == Ps 
y2 +p P"" n "" . p"" ns s 

(3.22) 

Conservation of energy: 

h +_I_y2 h 
1 Y 2 == 

..I. __ 

"" 2 n"" s . 2 ns 
(3.23) 

-.~ - -- "-.--., 
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where the pressure and the enthalpy are given by the equation of state, Eq. (2.16), 

and the enthalpy equation, Eq. (2.30), respectively. It should be noted that the 

form of the enthalpy equation implies that the molecular vibrations are in equili-

brium everywhere. 

For the calculations to follow, the velocities behind the shock must be 

given in the present coordinate system. The following geometric relations are 

obtained from Fig. 5: 

u s = V n s si n S + V t s cos S (3.24) 

v s = - V n s cos S + V t s si n S (3.25) 

where the velocity components as referred to the shock are given by 

V = 
n5 

P"" 

Ps 
V 00 sin C] (3.26) 

V ts = V to;> = V 00 cos C] (3.27) 

Fig. 4 oIso indicate .. that the relation between the shock coordinates and the 

shock wave angle C] is given by 

d y 
s 

dx 
= (1 + Ky ) tan S 

s 

where, in general, i3 is a function of x. 

(3.28) 
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3.2.2 Frozen Shock Conditions 

For frozen and nonequilibrium flow it will be assumed that the composition 

of the air does not change across the shock, that is, Z = Z • Since, in the 
00 s 

present calculations, the shock wave is assumed to be a discontinuity of zero 

thickness, and any possible chemical reaction would need some finite thickness 

in order to take place, the assumption is a logical one. 

Combining the equation of state with equations (3.20) through (3.23), it 

can be shown that 

v '" ( RZeo T"') p:: I T = n 1 + V '" - 2(h - hJ -
s RZ \,2 n s 

s n '" 

2 
V - 2 (h -h ) n'" s eo 

RZ 
s (3.29) 

For any given free stream conditions (i .e. Teo' V , C. ) and thp .hock wave 
00 100 

angle a, the temperature behind the shock, T ,can now be found from equations 
s 

(3.29) and (2.30) by solving these equations numerically. Using the continuity 

equation, Eq. (3.20), and the energy equation, Eq. (3.23), the density ratio 

across the shock is obtai ned as 

V '" _ n 

- J'"y 2 _ 2 (h _ h ) i· 
., n'" 5 eo 

(3.30) 

Knowing the temperature and the density behind the shock, the static pressure 

rati\1 across the shock becomes 

T 
= s 

Too 
(3.31 ) 

=-- - - _c __ -. __ - -,. • 
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which completes the calculations of the static conditions on the dow.,stream side 

of the shock wave. 

Unfortunately, the solution described above involves an iterative calcula-

tion of the temperature T • Since iterations are normally time consuming, il is 
s 

impractical to calculate the shock conditions by this process at each step in the 

course of a numerical calculation. Instead, the expressions for u ,v, T , p , 
s s S 5 

and p , presented in this and in the previous section, may be expressed in diffe­
s 

rential form in terms of the shock wave angle gradient. It is then possible to 

integrate for some selected key variables, say density P and temperature T , 
s s 

while the values of the remaining variables are determined from simple algebraic 

equations. 

Differentiating the expressions for u , v , T ,p and p with respect to 
s s 5 S S 

x results in the following differential shock relotions: 

d T dO" s = T", 01 CfX dX (3 .32~ 

dp 
dO" s = P", °2 dx crx (3.33) 

dp 
dO" s = R Z (p T 01 + P T 02) dx 55'" 0>5 crx (3.34) 

du 
~+ 5 :;: 

Yo> 03 K v 
dx dx s 

(3.35) 



..•. 

d v 
--,--:;..s = 

dx - u 
s 
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K (3.36) 

where 0
1 

through 0
4 

are dimensionless functions explicitly given in Appendix 

8. 

From Fig. 3 it may be deduced that 

r = rb + y cos e 
5 s 

whi ch, upon di fferenti ati on, yi el ds 

d r 
--.!.. = (1 - Ky ) sin e + (1 +Ky ) cos e tan ~ 
d x s s 

where use was made of the relati on 

d rb 
-- = sin e 
dx 

which is obtainable from geometry. 

3.2.3 Equilibrium Shock Conditions 

(3.37) 

(3.38) 

(3.39) 

In thi s case it will be assumed that the gas i nstantaneousl y reaches the state 

of thermodynamic, that is, thermal and chemical, equilibrium behind the shock, 

irrespective of the conditions in the free stream which may be arbitrary. While 

for frozE!n shock conditi ons the composi ti on of the gas on the downstream si de of 

the shock wave is prescribed by the free stream ccmposition, it is unknown in the 

present problem. The necessary additional relations are furnished by the equations 

for chemical equilibrium, derived in section 2.6 . 

.... -.. 
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Using the equation of state to eliminate the pressures from the equations of 

conservation of mass and momentum across the shock, it can be shown that 

PCI) b _~(t-)2 RZ T 
= s s 

P 2 y2 s nCl) 

(3.40) 

where 

R Z", T '" 
b = 1 + y2 

n'" 

(3.41) 

The reci procal of Eq. (3.30), whi ch was deri ved from the conservati on of energy, 

yields 

(3.42) 

For given shock wave angle a, equations (3.40) and (3.42) are two independent 

relations for the density ratio across the shock as function of density p and 
s 

temperature T • Hence, assuming some reasonable values for p and T ,a 
s s s 

solution is obtained O:>y iteration on p and T ) when the difference between the 
s s 

right hand sides of equations (3.40) and (3.42) assumes a specified minimum value. 

Having determined the density p and the temperature T ,in the course 
s s 

of which the species mass fractions C. have also been calculated, all other 
IS 

flow variables are readily evaluated from the available equations. 

Although equilibrium shock data are available in the literature (Ref. 30, 31), 

these data are usually presented for selected atmospheric free stream conditions at 
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relatively low altitudes. The procedure described above, however, is applicable 

for arbitrary combinations of free stream pressure, temperature and composition, 

as they may occur at high altitudes or in a hypersonic wind tunnel. 
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CHAPTER IV 

METHOD OF SOLUTION 

4.1 The Method of Integral Relations 

4.1.1 The Method in General 

In order to appl y the method of integral relations as described by Dorodnitsyn 

in Ref. 2, all the partial differential equations are cast into the divergence form, 

namely 
of. 

I 
+ ox 

oG. 
I 

oy + H. = 0 
I 

(i '" 1, 2, • '" m) (4.1) 

Here x and yare the independent variables, while F. , G. and H. are the 
I I I 

known functions of the dependent variables, and m denotes the number of 

equations. 

Consider now the solution of the above system of m equations in the region 

which is bounded by the body surface and by the shock wave y (x). Dividing 
s 

this region into N curvilinear strips (see Fig. 6) bounded by lines 
" 

v = y - k (x) k - ~ Ys (4.2) 

where k = 0, 1, 2, ••• , N, the system (4.1) can be integrated with respect to 

y across each strip. The result is a system of integral equations of the form 
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d y + G. k+ 1 - G. k + 
I, I, 

H. dy 
I 

= 0 (4.3) 

where k = 0, 1, 2, ... , N - 1. Using Leibniz's rule for differentiation under 

the integral sign (Ref. 32), the first integral may be rewritten and the above 

equations become 

d 
dx ( 

k +1 k) dys 
dy - N F i , k + 1 - N F i , k """'d7 

+ G. k + 1 - G. k I, I , 
= 0 (4.4) 

In order to evaluate the integrals, the integrands must be known functions of y. 

Unfortunately the integrands F. and H. contain precisely those dependent 
I I 

variables for which values are to be calculated, hence some approximations '1ave 

to be made. Generally, as an approximation, any interpolation formula can be 

used whi ch expresses the val ue of F. or H. at an arbitrary 0 S:y :s: y through its 
I I S 

values on the lines y = Yk. For example, one may use polynomials of the form 

N 
F a ~ a. (x) y" • I In 

n=-O (4.5) 

k H. - b in (x) yn 
I 

, 
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where the a. (x) and b. (x) are to be evaluated in terms of the boundary values 
In In 

at the stri p interfaces, soy 

F. = F. k 
I I, 

H. = H. k 
I I , 

(4.6) 

Performing the necessory operations on these polynomial appn>ximations yields a 

system of m. N ordinary differential equations of the following form: 

N 

L: n~l 
n=O 

_ ( kN+1 k) 
Fi,k +1 - N Fi,k 

+ 
~ bin (x) ( 
L n+1 
n=O 

dy 
s -+G -G 

dx i,k+1 i,k 

= 0 

where k = 0, 1, .•• , N - 1; n = 0, 1, ••• , Nand i = 1, 2, ••• , m. 

(4.7) 

The solution of the system (4.7), obtained when the region is divided into 

N strips, is called the Nth approximation. It is obvious from the above that 

with higher approximations the complexity of the problem increases.considerably. 

Belorserkovskii (Ref. 37) demonstrated the convergence of the method by COi'nporing 

one-, two-, and three-strip solutions for supersonic flow post a circular cylinder. 

He showed that, at I east for that case, there is practi call y no difference between 

the three solutions. Moreover, since previous investigations with simple rate 

Lt ... .Ia."" - .----. , .. .... ..~... ' .. , ~ . --"',.-: ~ 

.' 



processes (Ref. 12, 13) have shown that the first Oinear) approximation also agrlHlS 

well with results from other methods, the linear approximation is investigated 

herein. 

4.1.2 The Fir~~ Approximation 

For the first approximation, according to the previous section, N = 1, k =0, 

n • 0, 1. Hence from Eq. (4.5) the polynOl'nial approximations have the general 

form 

P. • c. 0 (x) + c. 1 (x) Y 
I I I 

(4.8) 

According to (4.6), and the coordinate system, (Fig. 3), it is found that at 

y=O: 

(4.9) 

y=y: 
S 

P. == c' O(x)+c' l (x)y 
I,S I I 5 

From (4.9) the coefficient functions in general are 

(4.10) 

(P. - P. b) 
1,5 I, 

Applying this procedure to F. and H., the coefficient functions are given by 
I I 

Eq. (4.10). Equation (4.7) may now be simplified and, for the first approximation, 

results Ir 

,,_. ~,-....... .. . ..... -.- ....... _.,- . 
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d 
-d x (F. + F. b)-

1,5 I, y 
5 

1 dy 
(F. - F. b) d x

S 

I, S I, 
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+ (G. -G. b)+(H. +H. b) = 0 
1,5 I, 1,5 I, 

(4. 11) 

The ob~ve equatJon might be called an operator equation, permitting the 

transformati on of the gi ven parti al differenti al equati ons of the form (4. 1) di recti y 

into ordinary differential equations for the dependent variables along the body 

surface and the shock wave boundary. 

4.2 Nonequilibrium Flow 

4.2.1 General Remarks 

As early as 1929, Busemann (Ref. 33) showed that supersonic flow of an 

inviscid gas about circular cones is characterized by the fact that the pressure and 

the velocity vector are constant on coaxial conical surfaces having the same vertex 

as the conical body. A consequence of this is that the shock wave, forming one 

boundary of this flow field, must itself be a conical surface. It will be shown in 

the discussion of the results, that, in the case of nonequilibrium, chemically 

relaxing flow in this case, the time dependency of the chemical reactions destroy 

this self-similarity mentioned by Busemann, even though the flow is considered 

to be inviscid. Therefore, no definite statement can be made, a priori, about the 

shock shape or the behavior of other flow parameters. Values for all variables 

" 

, . 
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must be calculated by integrating the conservation equations together with the 

equation of state and the boundary conditions in a step-by-step fashion along the 

I ength of the cone. 

Two different sets of equations will be examined. The first set, later 

referred to as the standard approximation, contains all the conservation equations, 

equations (3.12) through (3.15), in approximate form. The second set, later 

r~ferred to as the semi -exact procedure, uses onl y the conti nuity and the y-, 

momentum equations in their approximate form, while the x-momentum and species 

conti nuity equati ons are used in the exact form. 

For a supersonic flow field, which will be considered here, the equations 

are of quasi hyperbolic character and thus form an initial value j)rcblem. Initial 

values are given by the frozen flow solution to be discussed in section 4.3, where 

it will also be shown that initial gradients can be derived as functions of the 

i niti 01 val ues. 

4.2.2 The Standard Approximation 

The application of Eq. (4.11) to the conservation equati.ons, Eq. (3.12) and 

equations (3.16) through (3.18), results in the following ordinary differential 

equations where use was made of the fact that Vb = 0, and y = 0, at the b.ody 

surfoce. 

L. ,.,&j,,~ .. • 
.~. --~.--" 
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Continuity: 

1 • • dys 
• - (p u r J -p u rJ) -

y 5S5 bbb dX 
2 • 

- (1 +Ky ) p v rJ 
y s s s S 

5 

x-Momentum: 

1 [ 2' .. - (p + P u ) r J -
Y 5 S 5 5 

5 

5 

dy 
5 

dx 

2 (1 + Ky ) p u v ) - p u v K r j 
55555 5555 --

+ . 
J 

y-Momentum: 

d • 
--..:.. (p u v r J ) 
dx 5 S S 5 

1 --
• dy 

(p u v rJ)--!. 
5 5 5 5 dx 
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(4.12) 

(4.13) 

(4.14) 
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Species continuity: 

= -L (p u C rsj - Q U. 
Y s s is 'I) I) 

5 

• • • •• 2 - - (1 + Ky)p v Y 555 
C. r J + (1 + Ky ) r J W. + rbJ W'

I 
b (4.15) 

IS 5 5 5 IS 
S 

Expanding the differentials and introducing the differential shock relations 

given in section 3.22, the above equations assume the following form, where 6 

is der. ned as 

Continuity: 

x -Momentum: 

dFb 2 d'b d~ _ 
"""'dX + ub """'dX + 2 Pb ub """'dX + (1 +j flcos e>[ R Zs (ps T",O 1 

+p .. Ts(2)+P",us2~ +2Ps Vcol:s 0 3 ] ~~ 

= -L { (p + P u 2) F - (p, + P u 2) F 
y 5 S 5 1 'I) b b 2 
s 

- P u v (1 + j 6cos 9) ( 2 + 5 Ky ) 
s s s s 

+[Fb +ps(1+ Kys)] j 6sin9 } 

(4.16 ) 

(4.17) 

(4.18) 
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ywMomentum: 

w da 
(1+jbcos9)(p ... u v tL+p V ... v n..+p V ... u 0 4 ) ~ s s -"2 s 5 . ~ S S a x 

= .l..{p v (u F1wv F3)+(D. - p)(2+j 6cos 9+Ky) 
y s s s S 'D S S 

s 

+[Pl:oub= +2Ps us
2 

(l+j 6 COS9)JKYs} (4.19) 

Species continuity: 

+ V 0 ) ~ Ps ... 3 dx 

• -• W'
b 

+ (1 + Ky ) (1 + j bcos 9) W. 
I 5 IS 

1 - - (C - c. ) (p u F - p v F ) 
y ib ISS S 1 5 S 3 

s 
(4.20) 

where F l' F 2' and F 3 are di mensi onl ess functi ons defi neel as 

F 1 = (1 + Ky ) tan Il - (1 - Ky ) j 6sin e 
5 5 

(4.21 ) 

(4.22) 

F = (2 + 3 Ky ) (1 + j 6cos 9) 
3 s 

(4.23) 

The equations given above must be supplemented by the energy equation and the 

equation of state in differential form. 

""-----.~.-;;.. 
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Energy: 

dlb c.!T 
+ ~hib 

d C ib 
+ cpb 

b 
0 '1, "d.;( = 

dx dx 
• 

(4.24 ) 
, 

State: 
dl\ d'b dTb 

dx - R~ T - - R~ Db dx b dx 

(4.25) - p R* Tb~~ 
d C

ib = 0 
b . M. dx , , 

Since the mass fraction~ C. ere linearly related to each other by the two mass , 
balance equations, only three of the five C. are independent. Therefore, , 
equations (4.17) through (4.25) constitute a system of eight :iimultaneous diffe­

rential equations for the grddients of P
b 

' u
b

' ~, T
b

, (J, and three of the five 

It may be seen from the conservation equations in the divergence form, and 

from the discussion of the integral method, that the equations presented in this 

section contain linear approximations for the following terms: 

Continuity: 

x-Momentum: 

y-Momentum: 

2 . 
(p+pu )r J, 

P u v K r j - j p (1 - Ky) sin e 

2 . 
(p+ pu ) K rJ + j P (1 + Ky) cos e 

Species continuity: 
{p u C. , 

.' 
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It is of interest to examine these approximations in some detail. First, it is 

noted that it has no effect on the x-Momentum equation, Eq. (4.13), whether one 

approximates the terms p u v K r j and j p (1 - Ky) sin e separately, or combined. 

The situation is analogous for the y-Momentum equation. Second, the body sur-

face curvature K (x), and the surface inclination angle e (x) are constants as 

far as the linear approximations in y-direction are concerned. It is thet. noted 

that both of the momentum equations contain linear approximations for (p +p i~ 

and p u v rj. However, while the term p (1 - Ky) is linearized in tl,e x-Momer.-

tum equation, it is p (1 + Ky) in the y-Momentum equation. This is an obvious 

discrepancy which requires particular attention. 

Application of equations (4.8) through (4.10) to these terms leads to the 

following relations for p (y) : 
,. 

Since two different values for the pressure at anyone point in the flow field are 

unacceptable, P1 (y) and P
2 

(y) must be required to be the same. It can be seen 

at once that this condition is satisfied for K = O. On the other hand, for K + 0, 

it can be shown that this not only requires Fb and Ps to be the same, but also 

that 

, 
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p (y) = I\, = Ps = constant 

Fortunately this discrepancy is the only one, since the application of 

equations (4.8) through (4.10) to the remaining terms generally leads to only ane 

2 nonlinear function of y, each, for pu, pu v, p + P u ,pu C., and W •• A 
I I 

procedure to avoid the discrepancy altogether, and simultaneously reduce rhe 

number of functions for which approximations have to bo introduced, is discussed 

in the next section. 

Apart from this it should be noted that certain terms disappear in the con-

servation equations when either j or K, or both, are zero. In this case, no 

linearizations are introduced for the respective terms. Thus, for example, when 

the equations are applied to wedge flow (K = 0, j = 0), the linearized terms 

2 • 
which are actually used reduce to (p u), p, (p u ), (p u v), (p u C,) , and W •• 

I I 

4.2 .3 The Semi -exact Procedure 

The general form of the conservation eqyattons for the one-strip approxi-

mation, Eq. (4.11), already indicC:1.ted -that the equations are formulated in terms 

of the variables along the-shock wave and along the body surface, only. This 

situation suggests the use of the flow tangency condition, Eq. (3.19), in order to 

simplify some of the partial differential equations before they are integrated in 

y-direction, and thereby converted to ordinary differential equations. As a 

matter of fact, it is seen from equations (3.12) through (3.15) that the x-Momentum 

.r~ -, ~-==-"'!"tllll_ .!"'--""---~'-'''''''-''.-='''',-''!'<:-;::: .. ~-iiiii!A~;!iaaE_, --- ~ ~",,;-~':...-
". ~_ ...... t~ 
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equation and the species continuity equation reduce to ordinary differential 

equations in terms of the variables along the body surface when v !~ set to zero. 

Therefore, only the overall continuity equation and the y-Momentum equation 

need to be used in approximate form, which results in a much simpler set of 

equati ons for the semi -exact procedure. Thi s set then consi sts of equati ons (4.17), 

(4.19), and (4.21) through (4.25), while the x-Momentum and the species con-

tinuity equations are replaced by 

dUb 
+ 

d"b 
= 0 ~ ub -dx dx 

(4.26) 

and 

Pb u
b 

d Cib 
dx 

- W
ib 

= 0 (4.27) 

respectively. Thus, the introduction of the above exact equations eliminates the 

need to approximate the terms pu C. r j , (1 + Ky) W. r j , and p (1- Ky). In 
I I 

particulc!"" the d!s'crepancy discussed in the previous section is removed by not 

using an approximation for p (1 - Ky). 

A careful comparison of equations (4.26) and (4.27) with their approximate 

counterparts reveals that they may be expressed in a combined form by introducing 

certain indicators, say e and a.. Setting the indicators to zero results in the 

exact equations, while assigning the value unity yields the approximate equations. 

Hence, 
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x-Momentum: 

d I\, 2 dPb 
d + eu -d + (1+ e) x b x 

+ e (1 +j 5'cos 9) [I< Z (p T n 1 + P T n 2) 
5 SCD CDS 

(4.28) 

= ~ {(p + P u 2) F - (Po +p u 2) F 
y 5 S s 1 'b b b 2 
s 

- P u v (1 +j &' cos 9) (2 + 5 Ky ) 
S 5 S S 

+ [I\, +pS(l+ KyS)] j &sin 9 } 

Species continuity: 

dC ib - do 
d - a.(C·

b
- c. )(l+j [) COS9)(PCD U D-+p VCD

(
3) -d x I IS 5 -2 S x 

(4.29) 

- .l.. (C'b - C. ) (p u F 1 - P v F 3) ] y I IS S S S 5 
S 

Equations (4.17), (4.19), (4.24), (4.25), (4.28), and (4.29) now represent 

a system of six simultaneous equations for the gradients of u
b

' ~, 1\,' Tb, C ib 

and o. Noticing that the y-Momentum equation and the species continuity 

equations yield the derivatives of the shock wave angle 0 and the mass fractions 

C
ib 

directly, the above set is easily solved for the remaining gradients. Using 

.. 

~'" " 
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the energy equation, Eq. (4.24), and the equation of state, Eq. (4.25), to 

eliminate the derivatives of ub and Pb' the following equations are obtained: 

dP b .. a 22 A 1 - a 12 A 2 -dx all a 22 - a 12 0 21 
(4.30) 

d T b 
= 

all A
2
-a

21 A1 
dx all 0 22 - a 12 0 21 

(4.31 ) 

do = 
A3 

;.;' dx 0
33 

(4.32) 

,~" 

dC ib = A4 
(i =0, N, NO) dx a 44 

(4.33) 

The coefficients a.. and the terms A. are functions of the variabl es along the 
IJ I 

body and the shock wave. They are explicitly given in Appendix C in their 

most general form, valid for any combination of the appropriate values for j, K, 

a., and e. For the present investigation which is primarily concerned with the 

application of the semi-exact procedure (a.;:: 0, e;:: 0) to the flow obout circular 

cones (j = 1, K = 0), this implies the use of nonlinear approximations for P u and 

P u v , 

Pu = 
+ (p u r - Q u

b 
r b )( y / y ) s S s "I:) s 

(4.34) 
rb + y cos 9 

pu v = 
P u v r 
s s s s ( 

rb + y cos e (4.35) 

, ; ~ • 
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and a linear approximation for p, 

y (4.36) 

Since it can be shown that the right hand sides of equations (4.34) and 

(4.35) are the sums of infinite alternating series in powers of y / y , where 
5 

o s: y / y s: 1 , the error of the method is determined by the linear approximation, 
s 

Eq. (4.36), for the pressure p (y) across the shock layer. 

Having determined the density Pb ' temperature T b' shock wave angle 0, 

and the mass fractions C
ib 

(i = 0, N, NO) by numerical integration of equations 

(4.30) through (4.33), the remaining C
ib 

(i = O
2

, N
2

) are calculated from the 

mass balance equations. Knowing the temperature T b and all of the mass 

fractions C
ib

, the static enthalpy can be evaluated, whereupon the velocity u
b 

can be computed from the energy equation. Similarly, with density 1\,' tempera­

ture T b' and the mass fractions Cib known, the pressure Pb is given by the 

equati on of state. 

As far as the variables along the shock wave are concerned, it suffices to 

integrate equations (3.28), (3.32) an,:) (3.33) in addition to (4.32). Once the 

shock wave angle 0, density P , and temperature T are known, all other 
s s 

variables behind the shock can be computed algebraic!y from the expressions given 

in Chapter III • 

The advantage of the semi-exact procedure over the standard approximation 

appears not only in its relative simplicity, but also in the fact t~at no 

. .-Att'tt': . ( .~ '.' ._,~~, .. J 
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approximations are involved which contain the rate equations or the species r:!t!!~ 

fractions. This is important because, for chemically relaxing flow, the C. are 
I 

key variabl es of parti cular interest. 

4.3 Initial Solution 

4.3.1 Frozen Flow 

In order to start the numerical integration of the equations presented in 

section 4.2, the values of all variables must be known at x := O. The calculation 

of these values will be based on the assumptions that, first, the flow is chemically 

frozen and, second, that, in case of a body with non-zero curvature (K + 0) 

there is a small region including the tip where the body may be considered to be 

a circular cone or a wedge (K ::: 0). Since the use of frozen shock conditions 

implies that the flow is frozen at the tip, this assumption is not a new one. 

With the moleculllr vibrations in equilibrium, and the gas composition 

frozen, there exists no mechanism to destroy the self-similar character of the flow 

field, and therefore the classical result of a straight shock wave and constant 

properties along the body streamline may be applied. Mathematically expressed, 

this means that in equations (4.17) through (4.19), the gradients of all flow 

variables along the body and that of the shock wave angle cr can be set to zero. 

This implies that also the right hand sides of these equations must vanish. Hence, 

with 6, defined by Eq. (4.16), taking the form 

11 .. ..$2 •. ) .. _. 
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'''; , 

6 = ys 
x sin e 

and F1, F2, F3 reducing to 

F 1 = (1 - j) tan ~ 

F2 = (l+j)tan ~ 

tan~ 
sin e 

F 3 = 2 (1 + j cot 9 tan 13 ) 
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(4.37) 

(4.38) 

(4.39) 

(4.40) 

the following algebraic equations, valid for chemically frozen flow about wedges 

o = 0) or circular cones 0 = 1), are obtained from equations (4.17) through (4.19). 

Continuity: 

x-Momentum: 

y-Momentum: 

- 2 P v (1 + j cot 9 tan ~) = 0 
s s 

- 2 P u v (1 + j cot 9 tan ~ ) + j (0. + P ) tan ~ = 0 
s s S 'D S 

P u v (1 - j) tan ~ - 2 P v 2 (1 + j cot 9 tan ~ ) 
S S S 5 S 

+ ~ - ps) (2 + j cot 9 tan~) = 0 

(4.41 ) 

(4.42) 

(4.43) 

Equations (4.41) throlJgh (4.43), together with the energy equation and the 

equati on of state, then represent fj ve equati ons for fj ve unknowns: u b' P
b 

' T b ,~, 

and a. 

•. -", ..... ,I! 

> 
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For a given flight configuration, that is given semi-vertex angle a and 

free stream canditions, the calculation is started with an assumed value for the 

shock wave angle (J, and calculating the temperature T , the density p, and 
s s 

the pressure p from the frozen shock conditi ons, that is, from equati ons (3.29) 
s 

through (3.31), respectively. With the velocity components u and v, which s s 

are to be computed from equations (3.24) and (3.25), the velocity at the body 

surface, u
b

' is given by 

v 
u b = u s + ...,...._,...,...;s....,.-~....,.._ 

2 cot ~ + j cot a (4.44) 

This relation can be derived by first eliminating ("b - ps) from the two momentum 

equations, and then replacing the term (P
b 

u
b

) from the continuity equation. 

Knowing the velocity u
b

' the continuity equation yields the density Pb • 

With u
b 

and P
b 

available, the surface pressure can be calculated from one of 

the momentum equations. Finally, the equation of state serves to obtain the 

temperature T b. The energy equati on, not needed so far, is now used to check 

the value of u
b

• If the velocity u
b 

so calculated does not agree with the value 

obtained from Eq. (4.44), a new value for the shock wove angle (J must be chosen; 

and the procedure is repeated. 

4.3.2 Initial Derivatives 

The necessity for determining the derivatives of all variables at x = 0 arises 

from the fact that the equations for the initial values were abtained by equating 

'<.$&2. & 

." 
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the numerators of the right hand sides of equations (4.17) through (4.19) to zero. 

Since, for an attached shock wave, also y (0) = 0, the right hand sides of 
s 

these equations become indeterminate at the tip of the body. The condition of 

frozen flow (C. = constant) lel]ds to the same difficulty in Eq. (4.20). 
I 

A set of linear equations for the initial derivatives can be derived from the 

governing equations by evaluating their limitir.g expressions as x'" O. For this 

purpose let the right hand sides of equations (4.17), (4.28), (4.19), and (4.29) 

be denoted by 8 l' 8
2

, 8
3

, and IS 4' ~fi:;pectively. Specializing them for the 

case of zero curvature (K = 0, rb = x sin e), and introducing 

Ys 
Ii :z: 

x 

they may be written as follows: 

8 1 = + [ P sus (ton ~ - j Ii) - ~ u b (tan S + j Ii) 
s 

- 2 P v (1 + j Ii cot 9)] 
s 5 

8
2 

= +[psu/(ton~-jli)- Pbub2(tonS+jli) 
5 

- 2 P v u (1 + j Ii cot 9) + (p - Dr ) ton ~ ] 
5 5 5 $ 'I) 

8 3 = -L [p u v (ton ~ - j Ii ) - 2 P v 2 (1 + j Ii cot e ) 
ys 5 S S S S 

- (ps -'1,) (2 +j licot 9)] 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

, 

.. _ ~.: ;:;;;;: . .!-:;~ ':a#;!LlU=-"-~"" .. ~,,-"'~""- ~ 
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8
4 

= W
ib 

+ a. {(I+ j bcot 9) W
is 

- ~(C'b-C, )[p u (tanS-jb)-2p v (l+6jCot9)'}(4,49) 
y I IS 5 5 5 5 ~ 

5 

Then applying L 'Hospital's rule in order to resolve the indeterminacy, the following 

limiting expressions can be obtained: 

lim 8 1 
x'" 0 

p v 
5 5 

, 2Q 
Sin tJ 

- 2 (cotp + j cot 9) (poo v 5 O2 + Ps Va> (4)} ~ ~ 

- (1 + j) ..i... (p u ) 
d x b b 

2 2 

I ' . _s:!-...::...S --=.,5 ,.-.."...,,-:=--...;:.~:...... + 5 5 5 {(
P+pu )-(Pb+Pbub) P uv 

, 8 "E:-
x!.."b 2 sin 2 S , 2 Q 

Sin tJ 

+(I-J')(p u 2 0
2 

+2p V u (
3
)+ RZ (p Too 0 1 +Poo T ( 2 ) 

005 5 00 5 55 5 

- 2 (cot p + j cot ~ (pooU 5 V 5 0 2 + Ps V 00 v 5 0 3 + P 5 V oou s(4)} ~ ~ 

(4,50) 

d 2 d'b 
- E: ( 1 + j) dx (p bUb ) - € """"(j)( (4,51) 

iLl&.._· '- 2 1 ; 

l 

.. ~., J 
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" 

, 

lim B = s s s 
{ 

p u v 

x"O 3 51n 2 a + 
P +p v 2 _p. 

5 5 5 • b 

. 2 g 
Sin ... 

- 2 (cot 13 + j cot e) (p v 02 + 2 P V"" 0 ~ ) v 
"" s s ... s 

- R Zs (2 cot 13 + j cot 9) (ps T"" 0 1 + P"" T s 02)} ~ ~ 
dF\, 

+ ( 2 cot 13 + j cot 9) d x 

and, finally, 

+ a [ (1 + j tan 13 cot 9) w. 
IS 

d Cib ] 
-(1+j)~ub dx 

(4.52) 

(4.53) 

where it is noted that the above expressions are to be evaluated at x = 0 only. 

If the limiting process is now applied to equations (4.17), (4.28), (4.19), 

and (4.29), and if the expressions given above are inserted on their right hand 

sides, the following equations for the initial derivatives in terms of the initial 

val ues result. 

Centinuity: 

x-Momentum: 

dPb 
U -+ Q 

b d x 'b 

(1 +e) dd~ 

(4.54) 

+ e(2 + j) 

(4.55) 
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y-Momentum: 

(4.56) 

Speci es conti nuity: 

• • 
:a W'b + a (1 + j tan 13 cot e) w. 

I IS 
(4.57) 

where 0S, ° 6' and 07 are dimensionless functions listed in Appendix 8. 

Supplementing equations (4.54) through (4.57) by the energy equation and 

the equation of state, 

dUb d Tb 
2 

Pb U
b + Pb cpb + 

Pb VOO 
Lb = 0 (4 58) 

dx dX X 
t 
" 2 " 

d~ d P
b 

- Pb R Zb 
d Tb Pb T b VOO 

S = 0 (4.59) dX - RZ b Tb dX dx X Too b 

where X is a characteristic length, and Land S are dimensionless functions 

defined in Appendix A, this set can be solved for the initial gradients. The 

resulting expressions are: 

where 

" 

", ,"'l'::: 



--

F = U b
2 { [1+e(1 +j)] cpb - (1 +e)RZb } 07 

- RZ b cpb Tb { [1+e(3 + 2 j)] ~~ rlS - e rl 6 + (1 + e)rl7 } 

2 u b 
- eR Zb ub [(2+j) Vtt> Os -°6 ] 

( 
dPb ) P", v! { [ ub 

- = - 1+e (3 + 2j)]-
d x x =0 [1 +e( 1+j)]u; V tt> °5 

- e ° + (1 + e) eL} (~) 
67 d x -0 x-

( 
d T b) =_ 
d x -0 x- Pb cpb { (:~) ~ 

e( 2+J') ~ ° -eO -Vtt> 5 6 + (1 + e) ° 7 
+ 

( 
dCib) = 

d x -0 x-

l+e(l+j) 

• • 
W'b + a. (1 + j tan fl cot e) W • 

I IS 

P
b 

u b [ 1 + a. (1 + j) ] 
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(4.61 ) 

(4.62) 

(4.64) 

It should be noted that, since no assumptions or approximations were used in 

deriving the initial gradients from the governing equations, the compatibility of 

equations (4.60) through (4.64) with equations (4.30) through (4.33) is assured. 

Again, for a.;::; 0 and e= 0, the expressions given above reduce to the initial grad-

i ents to be used for the semi -exact procedure. Letti ng a. ::: 1 and e = 1 resul ts in 

the initial gradients for the stnndard approximation. 
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4.4 Equilibrium Flow 

As mentioned earlier, an equilibrium flow solution in connection with non-

equilibrium flow about wedges or circular cones is useful because it provides a 

check, in an approximate way, for the values which should be approached 

asymptotically by the nonequilibrium solution. There are two reasons for the 

approximation. It will be shown in the discussion of the results that, for non-

equilibrium flow about cones, the shock wave is curved. By assumption, the 

shock wave angle a at the apex is the same as that for frozen flow, while further 

downstream, (] approaches the equilibrium shock wave angle which is always 

found to be small er than the shock wave angl e cr for frozen flow. Consequentl y, 
.. , 

those streamlines which have passed through the stronger portion of the shock wave 

1 • form a region close to the body surface which must have a higher entropy than the 

. ~ 
stream lines farther away from the surface. This region is sometimes called an 

entropy layer. Furthermore, it is known from theory that, in contrast to equi Ii-

brium, nonequilibrium dissociation and recombination are nonisentropic processes. 

Thus, the chemical relaxation in the flow provides another mechanism by which 

entropy is increased. It is therefore concl uded that the equi libri um state whi ch is 

reached after complete relaxation has a higher entropy than an equilibrium flow, 

originating from the same free stream conditions, would have. Since, by assumption, 

the two flows have the same total enthalpy, but their entropy is different, they 

cannot reach the same fi nal state • 

. , 
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Assuming that the air is in thermodynamic equilibrium everywhere in the 

flow field, the same considerations as for frozen flow apply, namely, that the 

flow field is similar. Again, this implies that all flow field parameters are 

constant on planes, or coaxial cones intersecting at the tip of the body. 

Newman (Ref. 36) has used equations (4.41) through (4.43), in connection 

with thermodynamic data from tables, to calculate conical flow parameters for air 

in equilibrium. He found that these algebraic equations yield results which are in 

excellent agreement with the results from the numerical integration of the Taylor-

Maccoll differential equation by Romig (Ref. 21). Similar calculations by Thoenes 

(Ref. 16, 17) for a simple air model, but using equations analogous to those pre-

sented in Chapter II for the thermodynami c properti es, confi rmed thi s agreement. 

The more sophisticated air model employed in the present investig~tion requires a 

method of calculation which differs slightly from that used previously, and is there-

fore outlined below. 

For an assumed shock wave angle cr the equilibrium conditions behind the 

shock wave can be calculated as described in Section 3.2.3, whereupon the body 

surface velocity, u
b

' is computed from Eq. (4.44). Substituting this expression 

into the continuity equation, Eq. (4.41),yields 

[ p u (1-j)-2p v (coHI+j cot9)](2cotl3+j cot 9) 
p = =-~s~s~ __ ~ __ ~s __ ~s ____________ ~~ __________ __ 

b (1 + j) [ Us ( 2 cot 13 + j cot 9) + v s ] 
(4.65) 

» ! 
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Solving the y-Momentum equation, Eq. (4.43), for the body surface pressure 

results in 

2 P v 2 (1 + j cot e tan ~ ) - P u v (1 - j) tan ~ 
s s s s S 

Po = Ps + -...::-~--=-:--:---,-~-::;,......;;......;~----
• b 2 + j cot e tan ~ 

(4.66) 

Starting from a first guess for the body surface temperature, Tb ' together with the 

density at the body surfal:e, P
b 

' from Eq. (4.65), the equilibrium species mass 

fractions must now be calculated by an iteration, using th •• equations provided in 

Section 2.6. This iteration can be terminated when the mass fractions C ib and 

the temperature T b thus obtained, together with density Pb and pressure Pb 

from equations (4.65) and (4.66), satisfy the equation of state. 

The energy equation, not used so far, again provides the closing link in 

the loop. If the value for the velocity at the body surface, u
b 

' obtained from 

the energy equation does not agree with the one calculated from Eq. (4.44), the 

procedure has to be repeated by selecting a new value for the shock wave angle a. 

4.5 Numerical Techniques 

For the numerical evaluation all equations were converted to dimensionless 

form by introducing the following dimensionless variables: 
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u' = u ,- v • P' = ..L T'= T . V; v -
Ya> 

• 
Ta> 

, 
Pa> 

, , 
eo 

c Teo 
..L. . h 

p'" h ' - . c'= p • (4.67) 2 ' V2 
, 

y2 
, 

p 
Peo Yeo a> a> 

~, " = 
x , l 

)" 

Since infinite long cones have no typical dimension, the characteristic length )" 

was defined as a dissociation relaxation length by 

(4.68) 

where Z is the compressibility factor defined by Eq. (2.17). The equations were 

then programmed in FORTRAN Y, suitable for the UNIYAC 1108 located at the 

University of Alabama Research Institute. For simplicity of program check-out 

and debugging the problem was programmed in three separate parts for frozen, 

equilibrium, and nonequilibrium flow. 

The frozen flow program consists essentially of a double loop iteration, 

following the process of solution as described in Section 4.3.1. The process is 

started with an assumed value for the shock wave angle a in the main progrom, 

which then calls a subroutine for the iterative calculation of the temperature 

behind the shock, T , from Eq. (3.29). If the difference in the body surface 
s 

velocity, u
b 

' which is computed from two independent equations, is larger 

• -- £ = = , • 
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than a specified minimum, the computation returns to the main program and resumes 

with an adjusted value of the shock wave angle cr. The built-in limit of ten 

iterations was in no case exceeded. Running times, including compilation of the 

program, are in the order of 5 to 10 seconds, even with double precision. 

The structure of the equilibrium flow program is analogous to the one for 

frozen flow, however, with additional loops for the calculation of the equilibrium 

compositions as function of density and temperature. 

The nonequilibrium flow program is set up in terms of some eighteen sub­

routi nes for the vari ous thermodynami c and other functi ons di scussed in Chapters II 

through IV. Its core consists of the standard fourth order variable step Runga­

Kutta integration routine RKVS, which is described in detail in Ref. 38. Using 

the initial gradients and a simple Euler integration to calculate values for all 

variables at an incremental distance away from x = 0, the computation switches 

over to the Runga-Kutta integration of equations (4.30) through (4.33). Numeri­

cal problems and running times depend on the case and will be discussed in 

Chapter V. 
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CHAPTER V 

DISCUSSION OF RESULTS 

5.1 Frozen Flow 

The success of the one-strip integral method when applied ~o the com-

putation of supersonic flow of a perfect gas (y = 1.4) about circular cones was 

previously demonstrated by South (Ref. 12). He showed that, particularly for 

higher free stream Mach numbers (Mea> 3), the results from the integral method 

are in excellent agreement with the charts in Ref. 39. In the present investiga-

ti on, chemi call y frozen f1 ow was therefore studi ed onl y to obtai n proper i ni ti al 

conditions for the calculation of chemically relaxing flow, as pointed out in 

section 4.3. 

Figures 7 through 12 show the variation of some typical flow field variables 

with cone semi-vertex angle and free stream Mach number, for undissociated air 

in vibrational equilibrium. In Figures 7, 8, 11, and 12, the perfect gas results 

are 01 so given for comparison. In view of previous findings (Ref. 12), the 

difference between the perfect gas results and those of the present investigation 

can be attributed to vibrational equilibrium. It can be observed that for those 

combinations of free stream velocity and cone angle where the temperature in 

the shock layer becomes high enough to cause significant molecular vibration, 

the shock wave tends to be closer to the body than for the perfect gas case. 
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Simultaneously, there is a slight increase in the surface velocity, while the 

surface pressure is hardly affected at all • 

5.2 Equilibrium Flow 

Rather than to duplicate the work of Newman (Ref. 36), conical flow 

parameters for air in thermodynamic equilibrium are presented here in order to 

demonstrate the validity of the five component air mcx:lel for the range of cone 

semi -vertex angl es and ',:ree stream conditi ons consi dered in this work. The use-

fulness of an equilibrium ::low solution in connection with calculations of non-

equilibrium flow was already discussed in section 4.4. 

Figures 13 through 16 present a comparison of equilibrium flow lesults 

obtained from the one-strip integral method, used in this investigation, with 

results obtained by integrating the Taylor-Maccoll equation (Ref. 21). In 

addition, these figures represent a comparison of the thermodynamic properties 

of the air model used in the present investigation with the thermodynamic tables 

of Blackwell et al., which were used in Romig's work (Ref. 21). 

Thirteen cases for a variety of cone semi-vertex angles (30:S; e :S;45) and 

free stream Mach numbers (10 :s; Moo S30) were selected to cover a wide range 

of values of the hypersonic similarity parameter (5 s; Moo sin e:s; 18) at two 

different .free stream pressures. In all cases, the results from the two calculations, 

each using a different air model and a different method of solution, agree quite 

well. 

• 



, 

'~ 

" ·r 
" 1'" 

.~ 

, .' 

" ~ 

, 
• 

l 
I 
I ,--

74 

Additional c"ses for conical equilibrium flow were calculated for the 

purpose of comparison with chemically relaxing flow. In particular, it will be 

shown at the end of this chapter, how the state of equilibrium, which is approached 

asymptotically by the nonequilibrium flow, compares with the state of equili-

brium found when thermodynamic equilibrium is assumed throughout the flow 

field. In the next section, these equilibrium states are, for simplicity, labelled 

"asymptotic equilibrium" and "conical equilibrium", respectively. 

5.3 Nonequilibrium Flow 

Nonequilibrium flow calculations have been carried out for various pur-

poses, and the free stream conditions were chosen accordingly. Table V gives a 

detailed summary of all cases which were investigated, while Fig. 17 displays, 

for each case, the three independent characteristic parameters (semi-vertex 

angle a, free stream velocity, and al titude) in a velocity-al titude diagram. 

Cases 1 and 2 were selected principally for the purpose of comparing the 

results from the integral method used in the preser,t investigation, with those of 

the method of characteri sti cs (Ref. 20). Case 3 was computed to check previ ous 

calculations using a much simpler air model (Ref. 16). Cases 4 through 8 are for 

similar cones at constant altitude but at different free stream velocities. Cases 

9 and 10, together with case 5, were selected to study the effect of different 

altitudes on all flow variables at the same cone angle and flight velocity. The 
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influence of the semi-vertex angle e on the flow parameters is studied by com-

paring cases 10 through 13, in which both altitude and free stream velocity are 

kept constant. 

Figures 18 and 19 show the species mass fractions on the cone surface for 

cases 1 and 2, respectively. The slight difference i" the results near the tip of 

the cone might be due to one or more of the differences in the calculation 

procedures. A small difference in the initial values, for example, which is 

undetectable from the graphs shown in Ref. 20, together with different expressions 

of the equilibrium constants used for the reactions IV and VI (see section 2.5), 

may be one reason for the discrepancy. Another cause may be the fact that, in 

order to use the method of characteristics, a certain small but finite area of 

frozen flow has to be assumed near the tip, while no such assumption is needed 

for the integral method. In any case, the results for the gas composition from the 

two methods are al most i denti cal for x > 4 mm. The temperature and densi ty 

along the cone surface, plotted in figures 20and 21, show the same excellent 

agreement. 

The variation of the shock wave angle along the length of the cone is 

shown in Fig. 22. The resul ts from the two methods agree insofar as both methods 

predict that the shock wave angle C1 should decrease. While the characteristics 

sol uti on from Ref. 20 seems to i ndi cate that the shock wave angl e C1 shoul d 

approach its value for conical equilibrium flow monotomically from above, the 
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integral method solution indicates a limiting value for cr which is slightly 

higher than that. As a matter of fact, when the integration was carried out to a 

distance of about 70 cm away from the tip for case 2, it was found that the shock 

wave angle has a minimum value (cr= 44.39) between x = 25 mm and x = 75 mm, 

then approaches its asymptotic equilibrium value (cr = 44 .41) from below. From 

x = 23 cm onward none of the variables show any change in the first four sign-

ificant figures. Apart from this, it is noted that the difference in shock wave 

angle between frozen flow and equilibrium flow is relatively small (only about 

1 .5 degrees incase I, and even I ess than that incase 2). 

Cone surface pressures for cases 1 and 2 may be compared in Fig. 23. In 

both cases, the difference between the values for frozen flow and those for equili-

brium flow is less than 2%. The method of characteristics is seen to predict a 

slightly lower surface pressure Oower by about 0.5%) than the integral method. 

Case 1 also was the only case that presented numerical problems. The 

der.sity, the shock wave angle, the pressure and the surface velocity exhibited 

small damped oscillations, of which an example is given in Fig. 23a. It was 

found that a systematic removal of all possible sources for numerical inconsistencies 

in the program reduced the amplitude of these oscillations considerably. A 

further reduction was achieved by finding an optimum size for the initial step 

which was then taken to be AI;= 10-5 for all remaining cases. The fact that 

case 1 has the lowest body surface Mach number, i" connection with other 
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fir, lings, indicates that the probable cause for these oscillations lies in a viola-

tion of the stability criterion for hyperbolic equations. No definite conclusions 

have been reached at the present time since it is felt that this problem requires 

a more detailed analysis. 

The body surface velocity and tile surface Mach number for cases 1 and 2 

are shown in figures 24 and 25, respectivel y. No results from the method of 

characteristics were available for these variables. However, the fact that the 

authors of Ref. 20 present results for wedge flow where u
b 

was considered to be 

constant, permit the conclusion that they also found thllt the change in surface 

velocity along the body surface is negligible. 

For both, case 1 and case 2, the flow field has been calculated up to a 

dimensionless distance of s= 10.0 from the tip of the cone. This corresponds to 

a physi cal distance of about 10 mm incase 1, and about 70 mm for case 2. Com-

putation times were 146 sec for case 1, and 93 sec for case 2. This contrasts with 

computation times of about 1 hour per case on the BRLESC computer (Ref. 20) for 

the method of characteristics calculations. For the integration of case 2 up 

to S = 100.0, the running time was only 252 seconds in this work. 

Figure 26 shows the influence of the free stream velocity on the surface 

speci es mass fracti ons for constant al titude and cone semi -vertex angl e. Inc! udi ng 

the nitri c oxyde mass fracti ons, whi ch show the lowest val ues for the highest 

velocity, all variations are as expected. The large difference in the characteris· 

tic relaxation lengths is particularly noteworthy. The surface temperatures, 
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shown in Fig. 27, again display the drastic drop near the cone tip, which is 

caused by the strong dissociation gradients in this region. Surface density, shock 

wave angl,., and surface pressure are shown in figures 28 through 30. Their 

limiting values for large ~ show onl y a slight dependence on the free stream 

velocity, in contrast to the gas composition and the surface temperatures. 

Figures 31 through 33, representing a 300 cone at constant free stream 

velocity but at three different altitudes, clearly demonstrate the validity of the 

nonequilibrium scaling law 

p • L = constant 
<XI 

which is discussed in detail in Ref. 40. Here L is some char'lcteristic dimension 

of tho f10w field or the body. According to the theory, nonequilibrium scaling is 

a:f)plicable for that region of the relaxation zone where the reactions are predomi-

nontly dissociation reactions. As seen from the production rate equations given 

in Chapter II, the dissociation rates are proportional to the density. Once the 

state of equilibrium is approached, the rate of recombination, being proportional 

to the square of the density, becomes of equal importance, and therefore the 

nonequilibrium scaling law should cease to be valid. Figures 31 through 33 show 

that thi s is preci sel y so. 
> 

The length scole in these figures is somewhat arbitrary because the reference 

density was chosen for convenience such that the characteristic length 
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~ scale, which permits an easy conversion to the actual physical length in each 

case • 

The reason for the dose agreement in all variables shown, in spite of 

differences in the free stream temperature, lies in the fact that, for hypersonic 

conditions, the total enthalpy of the free stream is given mainly in terms of the 

velocity, while the free stream temperature contributes only a negligible amount. 

On the downstream side of the shock wave the situation is almost opposite, and 

therefore the absolute temperature, which controls the reactions, is practically 

the some in the three cases. 

Figures 31 through 33 shaw that the results, plotted versus x, are identical, 

or at least in very dose agreement, up to ~ = 10. For -; > 10, case 10 rapidly 

approaches equilibrium, which is reached near -; = 80. In fact, for -; >80, no 

changes in the first four significant figures for the density p and the tempel'ature 

T at the body surface could be observed. The curves for case 9 show a tendency 

towards equilibrium at -; = 100, but no such trend can be recognized for case 5. 

It is also noted from figures 32 and 33 that the asymptotic equilibrium values of 
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the surface temperature and the surface density do not agree with the respective 

values for conical equilibrium. 

It is concluded that, under otherwise identical conditions, the altitude has 

a decisive influence on the flow field variables. While, for practical purposes, 

the state of equilibrium is reached at a distance of about 50 cm away from the tip 

in case 10 (40 km altitude), this equilibrium state is not yet reached at 150 m 

from the tip in case 5 (80 km altitude). 

The influence of the cone semi-vertex angle e on the flow field is shown in 

figures 34 through 37. It is foui"ld that, qualitatively, an increase in e has the 

some effect as an increase in free stream velocity. Actually, the effect of a 

change in e depends very much on the other parameters, namel y 01 titude and 

free stream velocity. It is shown in Fig. 35, for example, that for a variation of 

e from 20 0 to 35 0
, the temperature at the cone tip changes by roughly 8000 OK • 

The values for conical equilibrium indicate that, once equilibrium is reached, 

the temperatures at the body surface sti II di ffer by 3000 oK, approxi motel y • 

Fi gures 38 through 40 di spl ay the strong dependency of the characteri sti c 

relaxation length A on free stream velocity, altitude and semi-vertex angle. 

For the examples discussed herein, A varies approximately between 10-3 and 

102 meters, that is, by five orders of magnitude. 

Fi noll y, Fig. 41 shows a compari son of coni cal and asymptoti c equi I ibri um 

in a Mollier chart for air in thermodynamic equilibrium. The three equilibrium 
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states shown l Are fixed by their respective values for the enthalpy and the 

density. First, the figure demonstrates that conical equilibrium flow is characte-

ri zed by an i sentropi c compressi on from the shock wave to the body, si nce the 

two equilibrium states are located on the same vertical line. Second, it is 

shown that the value of the entropy of the equilibrium state, which is asymptoti-

call y approached by the nonequil ibri um fI ow, di ffers from the entropy val ue for 

conical equilibrium, as discussed in section 4.4. Whether the entropy increase 

shown is mainly due to the difference in the shock wave angle for the two situa-

tions, or due to the relaxation process cannot be explained unless more detailed 

calculations are carried out. Finally, the close agreement of all variables cal­

culatedforconical equilibrium at the body (e.g. Tb ==5527
0

K, Zb =1.255) 

with the corresponding values indicated in the Mollier chart (Tb"':l 5500oK, 

Zb "':11.253) provides another demonstration for the accuracy of the air model and 

its thermo<:lynamic properties as used in this investigation. 

5.4 Conclusions 

A semi-exact procedure, which uses exact forms of the x-Momentum and 

species continuity equations along the body surface, was shown to yield results 

which are in excellent agreement with those obtained by the method of characte-

ristics. Although this procedure was also successfully used in the investigation of 

nonequilibrium blunt body flows (Ref. 3,4,5), it was reported to be always 
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unsuccessful for the case of vibrational equilibrium flow past painted bodies 

(Ref. 12,13). 

The amplitude of some bounded oscillations, which were encountered in one 

case with a relatively low surface Mach number near the cone tip (M
b 

< 2.5), 

could be reduced to a negligible amount by carefully removing all possible sources 

for inconsistencies in the program. The rapid increase of the surface Mach number 

near the cone tip apparently caused the oscillations to stabilize quickly, and no 

further probl ems were encountered. 

Although it is recognized that the method of characteristics furnishes infor-

mati on about the variables within the shock layer which cannot be obtained by 

the one-strip integral method without additional calculation schemes, it appears 

that running times for the semi-exact procedure used in this investigation are 

drasti call y shorter than those reported for the method of characteristi cs . 

The definition of a characteristic relaxation length for dissociation, 

A'"' (d Z/ dxf 
1
, was found to be extremely useful. Its principal advantage is 

that it transforms all problems to the same length scale, thereby avoiding the need 

to specify integration ranges for each problem individually. The latter process 

could be very time consuming because of the strong variation of A from case to 

case (10-3 < HmJ < 102, in the examples discussed). 

The application of the nonequilibrium scaling law, P.., • L = constant, to 

cases coveri ng a wi de range in 01 ti tude cI earl y demonstrated its validity for the 

type of fI ow consi dered in this i nvesti gati on • 

1. 
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It WtlS also demonstrated that, the three parameters, cone semi-vertex 

angle, free stream velocity, and altitude, exert a strong influence on the 

variation of most flow field variables. It is therefore concluded that, for cases 

where the characteristic length is of the same order of magnitude as the length 

of the conical body, large variations of the gas composition, the temperature and 

the density along the streamlines have to be expected in the entire shock layer. 

.... 5 -
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TABLE I 

GAS MODEL DATA 

Adopted Primory Quantities 

0.21 

0.79 

1.0 

1.01325 . 105 N/m2 

288. 15 oK 

8314.32 J/kmol oK 

6. 02257 . 1026 kmol 
-1 

6.6237 . 10-34 J. sec 

Derived Quantities 

0.232 918 

0.767002 

28.850335 kg;kmol 

288.187 988 J;kg oK 

1.220 174 kg 1m3 
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TABLE II 

ATOMIC AND MOLECUl.AR CONSTANTS 

Molecular Rotationol Vibrational Char. Temp. Electronic 
Weight Temperature Temperature of Dissoc. Degeneracy 

Species M. ]) x. a~ 2) a.v 3) * 3) 4) a. g. 
I I I I J 

kg /kmol oK oK oK 

O 2 
I 31.9988 4.20 2256 59380 3 

2 
1 

N2 28.0134 5.80 3374 113260 1 
0 15.9994 5 

3 
1 

N 14.0067 4 
10 

NO 30.0061 2.50 2719 75490 2 
2 

1) Ref. 35; 2) Ref. 24; 3) Ref. 20; 4) Ref. 34, Values for NO from Ref. 23. 
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Electronic 
Temperature 

a~ 4) 
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oK 

0 
11390 
]8990 

0 
0 
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326 
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27700 

0 
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VI 

Reaction 

.... 
°2+M -20+M 

N +M .... 2N+M 
2 -

NO+M" N+O+M -
NO +0"" 0 +N 

- 2 

N2 .. 0 .:' NO + N 

O 2 +N2 .:' 2 NO 

'" "1111 

T~BlE III 

DISSOCIATION RATE CONSTANTS 
\ 

Third Body M 3 
k d [m / kmol . sec ], Ref. 20 

N
2

, N, NO 
I _ 18 -1.5 * 

kd (N2) - 1.2·10 T exp (- eol T) 

O2 
I _ ' 

kd (02) - 3.0 kd (N2) 

0 I 
kd (0) 

_ -3 I 
- 1.75·10 Tkd (N2) 

O
2
,0, NO II 17 -1.5 * 

kd (07) a 9.9·10 T exp (-eN2/ T) 

N2 
II _ II 

kd (N2) - 3.V3 kd (02) 

N 
II 

kd (N) 
II 

= 15. 15 kd (02) 

°2,N2,0,N,NO kill 18 -1 5 * .. 5. 2 . lOT • exp (- e
NO 

I T) 
d 

klV 
d 

= 2.4 '108 TO. 5 exp (- 19230/T) 
. 

kV _ 10 
-5.0·10 exp(-38000/T) d 

kVI 
d 

if1 -2.5 / = 9.1·1 T exp (-65000 T) 
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TABLE IV 

EQUILIBRIUM AND RECOMBINATION RATE CONSTANTS 
\ 

Equilibrium Constant K M k = kd IK c r c 

I 6 -0 5 * N2,N,NO kl = 1012 T -1 Kc • 1.2 ·10 T . exp (-902 /T) r (N2) 

3 O
2 

I I 
Ckmol 1m] kr (02) = 3.0 kr (N2) 

0 
J 

kr (0) 
9 = 1.75·10 

II 4 * 
°2,0,NO kll = 55·1013 T-1.5 K-:: =1.8'10 exp(-aN2/T) I 

r (02) . I 

N2 
II 

= 3.03 k~\02) 
[kmol 1m3] kr(N2) I 

N kll = 15. 15 k~J(02) r (N) 

111_ 3 * 
°2,N2,0, kill = 1.3.1015 T- 1.5 Kc - 4.0 ·10 exp (-a

NO 
IT) r 

3 Ckmol 1m] N,NO 

KJV =3.333 '10 -3 TO•5 exp (-16 110/T) kJV 10 = 7.2 ·10 exp (-3120/T) 
c r 

KV = 4.5 exp (-37 no I T) kV 10 = 1. 111 . 10 exp ( - 230 /T) 
c r 

KVI .1.35 103 T-0 .5 exp(-21660/T) kVI 18 = 6.741 10 exp(-43340/T) 
c r - -0 

K~ through K~J from Ref. 25, K~V through K~J calculated. -
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12 

13 

e *) 

45.43 

41.07 

25 

30 
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II 
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" 
II 

.. 
35 

25 
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TABLE V 

TABULATION OF CASES FOR CHEMICALLY RElAXING FLOW 

01 t .*) Va:> *) 
Pa:> 3 Ta:> Ma:> Comments 

km m/sec kg 1m oK 

\ 

31 6638.0 -2 1.287 ·10 273.16 20 For comparison with method 
II 5974.0 II II 18 of characteristics (Ref. 20) 

40 6390.0 3.996 '10-3 250.35 20 For comparison with Ref. 16 

80 11186.0 1.999.10-5 180.65 41.4 

II 9350.0 II II 34.6 To study influence of free 
II 7909.6 II II 29.3 

stream velocity on flow field 
parameters 

II 6750.0 II II 25 
II 5400.0 II II 20 

60 9350.0 3.059 '10-4 255.77 29.1 To study intluence of 

40 II 3.996 '10-3 
250.35 29.4 

01 titude Onc!. IJ 5) 

II II II " .. To study i nfl uence of 
II II II II " semi vertex angle 

One!. IJ 10) 
II II II II II 

*) Parameters which are considered as independent. 

;8 

J 



,I . -, ,,_ _ _. _.< 

I~ 

·S. .,'.~ .. -_.." .... ~ ...... .-,~ 

Ii 
iii 
iii 

~I 
II' 
" 

i 
tl 
I' 
I 

fi 

~, 
~I 

r 
I: 
r , 
~ 
Ii 

~ 
1> 

~I 

~; 
" 
,J 
~i 

l00r--1 --,--------r--I--I---~l 

1.01 1.10 1.30 

80 1 #.1 \ \ \ . .. \ . 

\ 
\ 

1.40 V 

\ -=.. 
./ 

\ 
\ 
\ 
\ 

6°1 f I \ V ' I I / \ I \ " 
..... v V r ' :7' 

l 
'--' .. 
~ 
::I -

"i 

\ 
\ 
\ 

E 401 I I \ I \ I I' I 1\ / \ , 
<Cl I I. r \/ • 7" 

\ 

201 1 I" f , V' / X \ 
r.. ,\y 7\. 

\ = 2000 I 3000 4000 6000 7 

\ 
\ 

01 A I I I I I I 

O-V-- 2 3 4 5 6 7 

Va> sin e • 10-3 [m/ sec] 

Fig. 1 Temperature [oK] and compressibility f.'1ctor at the surface of 0 circular cone for air in thermodynamic equilibrium 

(Data from Ref. 21). 

... 

\ 

~ 

j 



~, 
" 

" , , 
• " 

( 
~:: 

j, 

" " • r· 

,\ , , 
'; 
; 
" 
'I· 

\ 

, 
1 

10~r-------T-------~------~-------r-------T------~ 
I I 

1~~ ____ ~ ____ ~~ ____ ~ ____ ~~ ____ ~ ____ ~ 

d 
T -

1 

1 

cfI 

0 

l~ ____ ~i~' ______ ~----~----~~----~----~ o 2 6 8 10 12 
T • 10 -3 [ oK) 

Fig. 2 Ratio of chemical to vibrational relaxation time for molecular oxygen 
and nitrogen (CO = C N = C NO = 0). 

94 

=-----"""""""""""'===~==-:.=>======""'", ,,,..,,,, -='" "=,--=, ,=u¥2~,_=, ;~==, ~~-=.I::::::.dJ 



,. 

,,' 

;, 

. , 

. ' 

x 

/ 
/ 

--

/ 
/ 

/ 

u 

--- - -­...-

-11-------

.-.-- . 

R (x) 

Fig. 3 Coordinate system on a pointed body with convex 
longitudinal curvature • 

95 

e (x) 

• 



,.. 

), , 
i 

1 , , 

pI 

/\ds
2 = dy 

dsj ..> 
/",.,<'" \ 

r 

dS 1 \ 

\ 
\ 

\ 

~ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

d 51 

d'P 

d 51 

={R+y)d'P 

dx --R 

=(l+Ky)dx 

Fig. 4 Differential flow field geometry for the dfltermination of 
the metri c coeffi ci ents. 

96 

... 



\ , 
, "'~ .. 

! 

, 
1 , ., 

. ;. , 
, 

, 
i 
I 

a 

.. 

shock wave 

\ 
\ 
\ 

x 

--}-__ - - e (x) 

---- -- -

Fig. 5 Velocity diagram for locally oblique shock waves. 

97 

• • 

, 



,. 

.~ 

) ,. 

, .• , 

-.-.~-

./ 
/' 

/' 

./ 
./ 

./ 

N 

./ N-l 
./ 

----
Y (x)/N - 1 s _--

98 

..... -._-

Fig.6 Strip arrangement in shock layer. 

. 7'"ftF _. _. 15~ :; .. .. - :e--' .. J 



,. 

b .. 
II -r 
I 
1 

-,. 
7.' 

99 

50~------------------------.--~--------~--------~ 

Integral method 

--- Ref. 39 (Y = 1.405) 
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Fig. 7 

Semi -vertex angle, e 
Variation of shock wave angle a with cone semi-vertex ongle e (chem. 
frozen, vibr. equll., TID = 250 oK). 
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Seml-vertex angle, e 

Variation of cone surface velocity with semi-vertex angle (chem. frozen, 
vlbr. equil., T CD = 250 oK). 

, 
! 
I 
'1 
.j 
; 

" I, 

" .... /. '", 

". I. 



'''''' . . 

: . ;. 
, ... ;-,. 
I, 

'. ;::..: . 

l. , .. . 
'" 
'>J 

: , 

? 
75 
.~'~, 
'~".; 

~;:.' 
~, , ... .')" 

'~. 
", : ':~" 
~. 
.,:. 

.,:'\' 
,~l 
.;t.'.~~ 

;~ 
t, 

.. ~ .... 

~, 
l:I: 

, 'tl" ?: .: . . :. 
'~ 
'.'.( 

{ 
~. 

..0 
N .. 
~ 
.E 
>.. ... .--.-..0 

'11 
l 
G 
U ., 
u 
~ 
~ 

= 

.--' 

...... ,. ..,-. 

105 

1.5 

0 Integral method 

---- Romig (R.f. 21) 
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0 Integral method 

---- Romig (It.,. 21) 
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Fig.22 Shock wove angles for cases 1 and 2 (r", = 273.16 oK, p", = 0.01 atm). 
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Fig. 27 Influence of free stream velocity on cone surfoce temperature 
( 9 = 30°, altitude 80 km) • 
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Infl uence of free stream velocity on cone surface pressure 
(9 = 30 0, altitude 80 km). 
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APPENDIX A 

SOME EXPRESSIONS ~ELATED TO THERMODYNAMICS 

Frozen speed of sound, a f : 

Dimensionless functions L, S: 

c RZT 
P 

c - R Z 
P 

d C. 

• 

L .. 

R* T 
CIQ 

S = A--:-­
y2 

CIQ 

I 

dx 

L:*-• I 
I 

d C. 
I 

dx 

o • 

'. " ". ... ..... ,... ~~ •• ' ,>~.' '"" 

133 

(A-1) 

(A-2) 

(A-3) 

(A-4) 
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APPENDIX B 

DIMENSIONLESS FUNCTIONS 01 FOR DIFFERENTIAL SHOCK 
RELATIONS AND INITIAL DERIVATIVES 

2 V",cos a [V", sin a (V",sin a - B) - (2 - b: (hs - hJ] 

T",[(RZ", -2c ) B + (V",~in a)bc ] ps ps 

(L c ° -V 2 sin a cos a) ] 
- ps 1 '" 

RZ", T", 
b = 1+ ---,... 

(V",sin a)2 
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(b-1) 

(b-2) 

(b-3) 

(b-4) 

( 
P", ) (p", )2 

03 = P -1 (sin a c\,;'s ~ + cos asin ~ ) - P sin a sin ~ 02 
s s 

(b-5) 

2 

04 = (-:-~- -1) (sin asin ~- cos a cos ~) - (:: ) sin a cos ~ 02 

(b-6) 

The following expressions are valid only at x = 0 for K = 0: 

J 

1 
i , ., 
I 
1 
# 

i 
1 
I 
1 
i '. 

q 

~ ,;", 

;:;:;:;=_~ -.,- ~~!:$'2'lIiI5F=' ===IOOlI==;:::;&I;;;;iIii;========;:;;a=====..::= tl!:::_;:1!o:;;""e~·===~_ ... a_.~--_ -
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, ' 

,t~ ''''', ~ .... ~. ,". ._ .... ~ ...... ' .. ' .. - , .. -., .' ... 

" . 5 

.... e=-, .... 3 la· _J. 11 
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PCD V~ (2 +j) { 
+ 

+ 2 ( cot j3 + j cot e) (p ... v 5 "2 + Ps v ... "4 ) $-7) 

+ j (1 + ton j3 cot e) (p u "2 + P V "3)} ... 5 5 CD 

+ j (1 + tan j3 cot e) (p CD u 2 "2 + 2 P V CD U " 3 ) 
5 5 5 

$-8) 

+2(cotj3+jc:ote)(p ... u v "2 +p V ... v "3+ P v ... u 0 .. ) 
55 5 5 S 50t 

+ j tan j3 cot e (p 5 Teo ° 1 + PCD T 5 02 ) R Z 5 } 

1 
{ [ 

P U V 
5 5 5 

p ... V; sin 2 j3 
+ 

P +p V
2

-D. 
5 5 5 'I) 

, 2 Q 

sin '" 

- J' (1 + tan j3 cot e) (p u v 02 + p V v rL + p Veo U 0 .. ) "'ss seos3s Sot 

- 2 (cotj3 + j cot e) (p ... v~ 02 + 2Ps Veo vs
(

4)]<2 cotS + j cot ef1 

- R Zs (ps Teo "1 + Peo T 5 ( 2 ) } $..(9) 

q 

" :"0. 
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APPENDIX C 

FUNCTIONS a •• AND A IN EQUATIONS (4.30) THROUGH (4·.33) 
IJ I 

= 2 
a 11 Ii, 

a 12 = - Pb C pb 

a 22 ; Pb [ R Zb - (1 + e) ":pb ] 
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(C-l) 

(C-2) 

(C-3) 

(C-4) 

a 33 = (1 + j 6 cos 9) (p U v "2 + P Va:> v 03 + n Va:> U ( 4 ) (C-5) 
a:> s s s s s s 

A 1 = ~ { P U [(1 + K y ) tan f:l - (1 - K y ) j 6sin 9] y 5 5 5 5 
S 

PbUb[(1+KYs)tanl:3+j 6 sin9 ] 

- P v (1 + j bcos 9) ( 2 + 3 K y) } 
s S 5 

- u. (p U 02 + P V (
3

) (1 + j '6 cos 9 ) 
b a:>s sa:> 

(C-6) 

(C-7) 

-_ .. _._,'-

. , 
" 
~ 
• j 
,,~ 

, . 
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+ ~{(p +p u 2 ) [{1+ Ky )toni!-{l-Ky )j5sina] 
y 5 S S S S 

S 

-(~ +Pb u;) [{1+Kys)ton~+ j6 sin a ] 

-P u " (l+j 5cosa){2 +5Ky) 
s s s s 

+ j "6 sin a [~ + ps (1 + Ky s)] } 

- € (1 + j "6 cos a) [R Z (p 1;" ° 1 + q,., T ( 2 ) 
S s s ,M 

2 ] A3 + P u 02 + 2 P Va> u 03 --
<X> S S S 0 33 

A3 = ...!.. {p u v [( 1 + Ky ) toni! - (1 - Ky ) j"6 sin a ] 
y S S S S S 

S 

- 2-+ (n - p ) (2 + j beos a) - P v ( 1 + j 0 cos a) (2 + 3 Ky ) 
"D s s s s 

+ [ ~ - Ps + Db u; + 2 Os us
2 

(1 + j 6 cos a)] Kys } 

(1 (C.b - C. ) { [ 
- _I IS P u {1 +Ky )ton~ - (1- Ky ) j 

y s s s S 
S 

o sin 6 ] 

-;:J v (1+j 5 cos6){2+3KY) } 
S S S 

A3 
+(1 {C.

b 
- C. )( 1 + j 0 cos e)(Q" u 02 + p Va:> (3) 

liS 5 5 033 
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(C-S) 

(C-9) 

(C-10) 

.' 


